Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
The book provides a critical assessment of the current knowledge and indicates new challenges which are brought about at present times by fighting man-made and natural hazards in transient analysis of structures. The latter concerns both permanently fixed structures, such as those built to protect people and/or sensitive storage material (e.g. military installations) or special structures found in transportation systems (e.g. bridges, tunnels), and moving structures (such as trains, planes, ships or cars). The present threat of terrorist attacks or accidental explosions, the climate change which brings strong stormy winds or even the destructive earthquake motion that occurs in previously inactive regions or brings about tsunamis, are a few examples of the kind of applications addressed in this work. Problems of such diversity cannot be placed within a single traditional scientific discipline, but call for the expertise in probability theory for quantifying the cause, interaction problems for better understanding the physical nature of the problems, as well as modeling and computational techniques for improving the representation of inelastic behavior mechanisms and providing the optimal design.
Structural Engineering of Transmission Lines provides practicing engineers with a comprehensive guide to the structural behaviour of transmission lines and the successful management of transmission line projects. Drawing on over 50 years of experience, the authors bring together technical knowledge and industry advice to offer extensive practical guidance on the design, construction and management of transmission lines. The challenging nature of completing a successful transmission line project, capable of functioning in all conditions, is discussed, with emphasis on achieving greater reliability and reduced risk of failure of electricity lines. Taking an international approach, the book details the considerations, methods and outcomes of projects in different parts of the world where the constraints and opportunities of resources, climate and culture are unique.
A comprehensive foundation in infrastructure design and analysis. Infrastructure Systems offers complete coverage of both static and dynamic analysis and design of infrastructure systems, from the basics of structural mechanics and dynamics to advanced analysis techniques. Bridging theory and applications, this invaluable book contains unique methods that simplify the analysis and design of nonlinear and complex linear infrastructural systems —powerful new tools for both informed students and practicing engineers. Well-written and easy to follow, Infrastructure Systems presents:
Tunnel engineering is one of the oldest, most interesting but also challenging engineering disciplines and demands not only theoretical knowledge but also practical experience in geology, geomechanics, structural design, concrete construction, machine technology, construction process technology and construction management. The two-volume " Handbuch des Tunnel- und Stollenbaus " has been the standard reference for German-speaking tunnellers in theory and practice for 30 years. The new English edition is based on a revised and adapted version of the third German edition and reflects the latest state of knowledge. The book is published in two volumes, with the first being devoted to more practical themes of construction and construction process in drill and blast and mechanised tunnelling. Microtunnelling and ventilation are also dealt with. The second volume covers both theoretical themes like design basics, geological engineering, structural design of tunnels and monitoring instrumentation, and also the practical side of work on the construction site such as dewatering, waterproofing and scheduling as well as questions of tendering, award and contracts, data management and process controlling. All chapters of both volumes include practical examples.
Designing structures as light as possible is an intelligent and responsible way for engineers and architects to conceive structural systems. Aesthetic values that make lightweight structures visually appealing come from a functionally correct form, which establishes a dialogue with forces. Nowadays, these structures are able to cross incredibly wide spans with a least amount of material. Still, the quest for lightness must also cope with current design constraints that gives sense to modern structures.This book presents a computational method for the preliminary shape design of lightweight structures. The strategy relies on fundamental concepts of structural design to formulate an opti- mization problem combining theories of mathematical programming and structural mechanics. The method considers many design settings including stress and displacements constraints, self-weight, multiple loading conditions, and structural stability considerations. Besides, the conceptual frame- work is well suited to accommodate project-specific constraints. These building blocks result into an integrated design process at midway between form finding and structural optimization. Several large-scale applications of three-dimensional bridge and dome structures emphasize the versatility and the robustness of the proposed method.The book is primarily written for graduate students and researchers in architectural, civil, and mechanical engineering. The material is also of interest for practioners in structural design who are concerned with the design of lightweight structures. Readers are assumed to have some basic knowledge of mathematical optimization and structural computational mechanics.
Damping Technologies for Tall Buildings provides practical advice on the selection, design, installation and testing of damping systems. Richly illustrated with images and schematics, this book presents expert commentary on different damping systems, giving readers a way to accurately compare between different device categories and gain and understand the advantages and disadvantages of each. In addition, the book covers their economical and sustainability implications. Case studies are included to provide a direct understanding on the possible applications of each device category.
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1: The Basis and Solids Eugenio Onate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Onate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.
Providing essential tests to determine a material's basic
structural property, this resource addresses behavioral laws and
the measurement of elasticity and tenacity. Chapters also provide
structural data and tests on endurance, impact, tensile and
compression, and hardness.
The non-destructive evaluation of civil engineering structures in reinforced concrete is becoming an increasingly important issue in this field of engineering. This book proposes innovative ways to deal with this problem, through the characterization of concrete durability indicators by the use of non-destructive techniques. It presents the description of the various non-destructive techniques and their combination for the evaluation of indicators. The processing of data issued from the combination of NDE methods is also illustrated through examples of data fusion methods. The identification of conversion models linking observables, obtained from non-destructive measurements, to concrete durability indicators, as well as the consideration of different sources of variability in the assessment process, are also described. An analysis of in situ applications is carried out in order to highlight the practical aspects of the methodology. At the end of the book the authors provide a methodological guide detailing the proposed non-destructive evaluation methodology of concrete indicators.
Divided into 12 chapters, Matrix Methods for Advanced Structural Analysis begins with an introduction to the analysis of structures (fundamental concepts and basic steps of structural analysis, primary structural members and their modeling, brief historical overview of methods of static analysis, programming principles, and suggestions for the rational use of computer programs). This is followed by the principal steps of the Direct Stiffness Method including plane trusses, plane framed structures, space trusses, and space framed structures. The case of plane or space framed structure, including possible rigid elements at their beam ends (rigid joints) is discussed in detail. Other topics discussed in this reference include the procedure for analyzing beams with internal releases (partial connection of beam elements) and elastic hinges, as well as the alternative handling of internal releases by modifying the element stiffness matrix. Furthermore, the Method of Substructures is demonstrated for the solution of large-scale models in terms of the associated number of degrees of freedom.
Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport examines soil-water-pollutant interaction, including physico-chemical processes that occur when soil is exposed to various contaminants. Soil characteristics relevant to remedial techniques are explored, providing foundations for the correct process selection. Built upon the authors' extensive experience in research and practice, the book updates and expands the content to include current processes and pollutants. The book discusses propagation of soil pollution and soil characteristics relevant to remedial techniques. Practicing geotechnical and environmental engineers can apply the theory and case studies in the book directly to current projects. The book first discusses the stages of economic development and their connections to the sustainability of the environment. Subsequent chapters cover waste and its management, soil systems, soil-water and soil-pollutant interactions, subsurface transport of pollutants, role of groundwater, nano-, micro- and biologic pollutants, soil characteristics that impact pollution diffusion, and potential remediation processes like mechanical, electric, magnetic, hydraulic and dielectric permittivity of soils.
The Planning Guide to Piping Design, Second Edition, covers the entire process of managing and executing project piping designs, from conceptual to mechanical completion, also explaining what roles and responsibilities are required of the piping lead during the process. The book explains proven piping design methods in step-by-step processes that cover the increasing use of new technologies and software. Extended coverage is provided for the piping lead to manage piping design activities, which include supervising, planning, scheduling, evaluating manpower, monitoring progress and communicating the piping design. With newly revised chapters and the addition of a chapter on CAD software, the book provides the mentorship for piping leads, engineers and designers to grasp the requirements of piping supervision in the modern age.
Sustainable Construction Materials: Municipal Incinerated Bottom Ash discusses the global use of virgin aggregates and CO2 polluter Portland cement. Given the global sustainability agenda, much of the demand for these two sets of materials can be substantially reduced through the appropriate use of waste materials, thereby conserving natural resources, energy and CO2 emissions. Realistically, this change can only be realized and sustained through engineering ingenuity and new concepts in design. Although a great deal of research has been published over the last 50 years, it remains fragmented and ineffective. This book develops a single global knowledge-base, encouraging greater use of selected waste streams. The focus of massive systematic reviews is to encourage the uptake of recycled secondary materials (RSM) by the construction industry and guide researchers to recognize what is already known regarding waste.
Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses.
Rockbolting: Principles and Applications brings current theoretical and practical developments in the most widely used support device for underground rock excavations. Today, one cannot find any rock excavation project that does not use rockbolts for rock support. The worldwide annual assumption of rockbolts is in the billions, with pieces applied to mines, tunnels and other types of geotechnical projects for rock and soil reinforcement. The text is based on over 25 years of experience of the author both as academic and practitioner. The book introduces the principles and background concepts of rock support, and then offers a comprehensive overview of the mechanics of rockbolting, as well as current rock bolt types such as mechanical, grouted, self-drilling, grouted cables, frictional and yield rockbolts. Installation and performance assessment are covered next including load-displacement curves and energy-absorption capacities. Two chapters on design and quality control, respectively, cover failure mechanics, the selection process and the connections with other supporting devices. On quality control, the author explains the usual tests and displacement measurements. The final chapter brings current case studies that combine the concepts presented in the whole book. The book is a professional reference for engineers in the mining and geotechnical industries and can be used as research material for academics in rock mechanics and stability studies.
Modeling Steel and Composite Structures explains the computational tools, methods and procedures used to design steel and composite structures. The reference begins with the main models used to determine structural behavior. This is followed by a detailed description of experimental models and their main requirements and care. Numerous simulations presenting non-linear response are illustrated as are their restrictions in terms of boundary conditions, main difficulties, solution strategies and methods adopted to surpass convergence difficulties. In addition, examples of the use of computational intelligence methods to simulate steel and composite structures response are presented.
Solutions for Biot's Poroelastic Theory in Key Engineering Fields: Theory and Applications provides solutions related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains. This book provides the commonly used methods for solving Biot's formulations and conclusions on fully-saturated soil dynamics. It presents various solution methods used in Biot's theory, such as the integral transformation method, the wave potential decomposition method, the finite element, and the 2.5D finite element method. It is suitable for graduate students, researchers and engineers who are interested in the soil-structure interaction problem with Biot's theory, as well as engineers in several subdisciplines.
Forensic Engineering, the latest edition in the Advanced Forensic Science series that grew out of recommendations from the 2009 NAS Report: Strengthening Forensic Science: A Path Forward, serves as a graduate level text for those studying and teaching digital forensic engineering, as well as an excellent reference for a forensic scientist's library or for their use in casework. Coverage includes investigations, transportation investigations, fire investigations, other methods and professional issues. Edited by a world-renowned leading forensic expert, this series is a long overdue solution for the forensic science community.
Das Buch stellt den Abschlussbericht zumVerbundprojekt KonText vor. Das wesentliche Anliegen des Verbundprojektes war die Reduzierung der Kosten von FVK-Bauteilen durch die Bereitstellung eines textilen Fertigungsprozesses und die nachfolgende Herstellung kraftflussgerechter thermoplastischer Faserverbundbauteile. Hierzu wurde die gesamte Prozesskette von der C-Faser-Optimierung, uber die Fertigungs- und Struktursimulation von kraftflussgerechten Textilien sowie Anlagenentwicklung und -erprobung bis zur Herstellung der Bauteile mittels klassischer Grossserientechnik "Umformen" bereitgestellt. Das Verbundprojekt wurde im Rahmen der ForschungsCampus Initiative "Open Hybrid LabFactory" durchgefuhrt.
Sustainability of Construction Materials, Second Edition, explores an increasingly important aspect of construction. In recent years, serious consideration has been given to environmental and societal issues in the manufacturing, use, disposal, and recycling of construction materials. This book provides comprehensive and detailed analysis of the sustainability issues associated with these materials, mainly in relation to the constituent materials, processing, recycling, and lifecycle environmental impacts. The contents of each chapter reflect the individual aspects of the material that affect sustainability, such as the preservation and repair of timber, the use of cement replacements in concrete, the prevention and control of metal corrosion and the crucial role of adhesives in wood products.
Practical Design of Steel Structures presents practical design examples and calculations for a multi-bay, steel-framed industrial building under the actions of a variety of loads (travelling crane loads, dead and imposed loads and wind forces). For the first time, engineers and students alike can appreciate the complete design process through the analysis of the whole structure and the design of structural members, all in compliance with Eurocode (EC)3. The calculations are presented in a simple and lucid way, employing a step-by-step approach stating the design philosophy, design considerations and clarifying the referred clauses of the code of practice. However, before analysing the structure and the design of its structural elements, it is necessary to understand the theoretical background and how the structure behaves under the actions of various loads, based upon practical design and field experience. The author considers the structural arrangement with respect to selection and availability of construction material, the cost within the scheduled construction programme and the overall budget. In addition he examines the buildability of the structure with regard to space restriction, method of construction and the geotechnical conditions of the site. The essence of this book is the simplicity and clarity of approach in the complete analysis of the whole structure and the structural design of every member. Augmented by design sketches, this book will prove valuable to practising engineers in design offices and students on structures courses
Characteristics and Uses of Steel Slag in Building Construction focuses predominantly on the utilization of ferrous slag (blast furnace and steel slag) in building construction. This extensive literature review discusses the worldwide utilization of ferrous slag and applications in all sectors of civil engineering, including structural engineering, road construction, and hydro-technical structures. It presents cutting-edge research on the characteristics and properties of ferrous slag, and its overall impact on the environment. |
You may like...
Reinforced Concrete Construction in…
Henry 1846-1935 Adams, Ernest Romney 1873-1930 Matthews
Hardcover
R866
Discovery Miles 8 660
Modeling and Simulation Techniques in…
Pijush Samui, Subrata Chakraborty, …
Hardcover
R5,815
Discovery Miles 58 150
Reinforced Concrete in Europe, Including…
Albert Ladd 1860 Colby
Hardcover
R860
Discovery Miles 8 600
Fundamentals of Geotechnical…
Braja Das, Nagaratnam Sivakugan
Paperback
R1,231
Discovery Miles 12 310
|