![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Poland, like other post-communist countries, is undergoing a transformation into a capitalist system. This transformation affects the country in many ways: economic, social, psychological and also ecological. Ecological problems are strongly connected with the political, economic and psychological inheritance of the past, as well as with changes in the post-communist society. In order to understand these problems, it is necessary to consider the following issues: - the geographic situation of Poland - the political transformations that occurred after World War II - forced development of heavy industry combined with neglect of its effects on the environment, and - the economic problems The three main goals of Environmental Engineering V are (I) to assess the state of scientific research in various areas of environmental engineering. (II) to evaluate organizational, technical and technological progress in contributing to ecological security, and (III) to determine the place of environmental engineering in sustainable development, taking into account political and economic conditions. Environmental Engineering V is of interest for academics, engineers and professionals involved in environmental engineering, seeking solutions for environmental problems in emerging new democracies, especially those who plan to participate in numerous projects sponsored by the European Union.
Elevated temperatures are known to affect the properties of both fresh and hardened concrete. This book describes in detail these effects and explains the mechanisms involved with particular reference to their practical aspects.
Lightweight aggregate concrete is undergoing something of a renaissance. Although this material has been available for many years, only now is it being used more widely. This book provides a comprehensive review of this growing field from an international perspective.
Shells are basic structural elements of modern technology and everyday life. Examples are automobile bodies, water and oil tanks, pipelines, aircraft fuselages, nanotubes, graphene sheets or beer cans. Also nature is full of living shells such as leaves of trees, blooming flowers, seashells, cell membranes, the double helix of DNA or wings of insects. In the human body arteries, the shell of the eye, the diaphragm, the skin or the pericardium are all shells as well. Shell Structures: Theory and Applications, Volume 3 contains 137 contributions presented at the 10th Conference "Shell Structures: Theory and Applications" held October 16-18, 2013 in Gdansk, Poland. The papers cover a wide spectrum of scientific and engineering problems which are divided into seven broad groups: general lectures, theoretical modelling, stability, dynamics, bioshells, numerical analyses, and engineering design. The volume will be of interest to researchers and designers dealing with modelling and analyses of shell structures and thin-walled structural elements.
Addresses the Question Frequently Proposed to the Designer by Architects: "Can We Do This? Offering guidance on how to use code-based procedures while at the same time providing an understanding of why provisions are necessary, Tall Building Design: Steel, Concrete, and Composite Systems methodically explores the structural behavior of steel, concrete, and composite members and systems. This text establishes the notion that design is a creative process, and not just an execution of framing proposals. It cultivates imaginative approaches by presenting examples specifically related to essential building codes and standards. Tying together precision and accuracy-it also bridges the gap between two design approaches-one based on initiative skill and the other based on computer skill. The book explains loads and load combinations typically used in building design, explores methods for determining design wind loads using the provisions of ASCE 7-10, and examines wind tunnel procedures. It defines conceptual seismic design, as the avoidance or minimization of problems created by the effects of seismic excitation. It introduces the concept of performance-based design (PBD). It also addresses serviceability considerations, prediction of tall building motions, damping devices, seismic isolation, blast-resistant design, and progressive collapse. The final chapters explain gravity and lateral systems for steel, concrete, and composite buildings. The Book Also Considers: Preliminary analysis and design techniques The structural rehabilitation of seismically vulnerable steel and concrete buildings Design differences between code-sponsored approaches The concept of ductility trade-off for strength Tall Building Design: Steel, Concrete, and Composite Systems is a structural design guide and reference for practicing engineers and educators, as well as recent graduates entering the structural engineering profession. This text examines all major concrete, steel, and composite building systems, and uses the most up-to-date building codes.
Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. The Structures and Architecture set of book of abstracts (704pp) and full paper searchable CD-ROM (2262pp) presents over 300 selected papers presented at the 2nd International Conference on Structures and Architecture Conference (ICSA2013), organized by the School of Architecture of the University of Minho, Guimaraes, Portugal (July 2013), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering. The set addresses all major aspects of structures and architecture, including building envelopes, comprehension of complex forms, computer and experimental methods, concrete and masonry structures, educating architects and structural engineers, emerging technologies, glass structures, innovative architectural and structural design, lightweight and membrane structures, special structures, steel and composite structures, the borderline between architecture and structural engineering, the history of the relationship between architects and structural engineers, the tectonics of architectural solutions, the use of new materials, timber structures and more. The contributions on creative and scientific aspects of the conception and construction of structures, on advanced technologies and on complex architectural and structural applications represent a fine blend of scientific, technical and practical novelties in both fields. This set is intended for both researchers and practitioners, including architects, structural and construction engineers, builders and building consultants, constructors, material suppliers and product manufacturers, and other experts and professionals involved in the design and realization of architectural, structural and infrastructural projects.
Bridges the Gap between Geology and Ground Engineering High-quality geological models are crucial for ground engineering projects, but many engineers are not always at ease with the geological terminology and analysis presented in these models, nor with their implications and limitations. Project engineers need to have a sound comprehension of the geological models presented to them, and to be able to discuss the models in so far as they might impinge on the design, safety and possible budgetary or time constraints of the project. They should also fully understand how site investigation data and samples are used to develop and substantiate geological models. Geology for Ground Engineering Projects provides a comprehensive presentation of, and insight into, the critical geological phenomena that may be encountered in many engineering projects, for example rock contact relationships, weathering and karst phenomena in tropical areas, composition of fault zones and variability of rock discontinuities. Examples are provided from around the world, including Southeast Asia, Europe, North and South America, China and India. Comprehensive and well-illustrated, this definitive book: Describes the important geological phenomena that could affect ground engineering projects Provides a practical knowledge-base for relevant geological processes Addresses common geological issues and concerns Rocks are described in relation to the environment of their formation, highlighting the variation in composition, distribution and geotechnical properties that can be expected within a variety of rock associations. Case studies, where geology has been a vital factor, are included. These are written by the project engineers or geologists responsible for the projects. Geology for Ground Engineering Projects is well illustrated with color diagrams and photographs. Readers are directed to satellite images of selected areas to explore for themselves many of the geological features described in this book.
Strength Design in Aluminum: A Review of Three Codes has been prepared by the Task Committee on Strength Design in Aluminum of the Structural Engineering Institute of ASCE to compare the Canadian CSA S157-03 Strength Design in Aluminum, 2003; the Eurocode 9 Design of Aluminum Alloy Structures (EC9); and the Aluminum Association's ""Specification for Aluminum Structures: Load and Resistance Factor Design, 2nd Edition"", 2000. Frequently using a tabular format, this report compares how the three codes treat symbols, design principles, material principles, resistance limited by yield or rupture, buckling, and connections. The aim of this book is to provide a basis for the preparation of a common document by signaling the areas of agreement, and more importantly, the areas of disagreement. By stripping the load and resistance factors from the design expressions, this book is able to compare the essential rules of engineering on which the codes are based, and to compare the positions taken by three different code writing committees. This book is a valuable resource for structural engineers working with aluminum, especially in the U.S.A., Canada, or in Europe.
The Engineering of Foundations, Slopes and Retaining Structures rigorously covers the construction, analysis, and design of shallow and deep foundations, as well as retaining structures and slopes. It includes complete coverage of soil mechanics and site investigations. This new edition is a well-designed balance of theory and practice, emphasizing conceptual understanding and design applications. It contains illustrations, applications, and hands-on examples that continue across chapters. Soil mechanics is examined with full explanation of drained versus undrained loading, friction and dilatancy as sources of shear strength, phase transformation, development of peak effective stress ratios, and critical-state and residual shear strength. The design and execution of site investigations is evaluated with complete discussion of the CPT and SPT. Additional topics include the construction, settlement and bearing capacity of shallow foundations, as well as the installation, ultimate resistance and settlement of deep foundations. Both traditional knowledge and methods and approaches based on recent progress are available. Analysis and design of retaining structures and slopes, such as the use of slope stability software stability calculations, is included. The book is ideal for advanced undergraduate students, graduate students and practicing engineers and researchers.
New Edition Now Covers Thin Plates, Plastic Deformation, Dynamics and Vibration Structural and stress analysis is a core topic in a range of engineering disciplines - from structural engineering through to mechanical and aeronautical engineering and materials science. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition provides and supports a conceptual understanding of the theories and formulae, and focuses on the basic principles rather than on the formulae and the solution procedures. It emphasizes problem solving through a structured series of tutorials and problems which build up students' understanding and encourage both numerical and conceptual approaches. It stands apart from other texts which set out rigorous mathematic derivations of formulae followed by worked examples and questions for practice. Students need to be capable of not only solving a structural problem using formulas, but also of understanding their solutions in practical and physical terms. Notwithstanding, the book covers a good range of topics: tension and compression; shear; torsion; bending, properties of cross-sections; shear force and bending moment diagrams; stresses in beams; deflection of beams; complex stresses and theories of elastic failure; energy methods; statically indeterminate systems; and structural instability. The new edition includes more topics, such as plastic deformation, dynamics and introduction to the thin plate theory, which are essential when students start their design courses. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition not only suits undergraduates but is useful for professional engineers who want to get a good grasp of the basic concepts of stress analysis.
Written to meet the requirements of engineers working in construction and concrete manufacturing, Mineral Admixtures in Cement and Concrete focuses on how to make more workable and durable concrete using mineral admixtures. In particular, it covers pulverized fuel ash (PFA), blast furnace slag (BFS), silica fume (SF), rice husk ash (RHA), and metakaolin (MK), as well as some new admixtures currently under investigation. For each mineral admixture, the book looks at manufacturing and processing, physical characteristics, chemical and mineralogical composition, quality control, and reported experiences. It also examines the provisions of national standards on the admixture's addition to cement and concrete. References to microstructures and chemistry are kept to a minimum and only discussed to the extent necessary to help readers apply the admixtures in practice. The book also addresses hydration, presenting the relevant chemistry and detailing the impact of adding mineral admixtures to concrete. A chapter on strength and durability explains the mechanisms, models, and standards related to concrete deterioration and how to mitigate carbonation, alkali-aggregate reactions, chloride attack and corrosion of reinforcement, external and internal sulphate attack, decalcification, and freeze-thaw action. This book is a useful reference for practicing engineers and students alike. It brings together, in one volume, information on the materials, hydration, and the strength and durability of cement and concrete with mineral admixtures. Offering a deeper understanding of mineral admixtures, it encourages engineers to more effectively use these and other wastes in cement and concrete to support more sustainable growth of the cement and construction industry.
The progressive deterioration of concrete surface structures is a major concern in construction engineering that requires precise repairing. While a number of repair materials have been developed, geopolymer mortars have been identified as potentially superior and environmentally friendly high-performance construction materials, as they are synthesized by selectively combining waste materials containing alumina and silica compounds which are further activated by a strong alkaline solution. Geopolymers as Sustainable Surface Concrete Repair Materials offers readers insights into the synthesis, properties, benefits and applications of geopolymer-based materials for concrete repair. * Discusses manufacturing and design methods of geopolymer-based materials * Assesses mechanical strength and durability of geopolymer-based materials under different aggressive environmental conditions * Characterizes the microstructure of these materials using XRD, SEM, EDX, TGA, DTG and FTIR measurements * Describes application of geopolymer-based materials as surface repair materials * Compares environmental and cost benefits against those of traditional OPC and commercial repair materials This book is written for researchers and professional engineers working with concrete materials, including civil and materials engineers.
In Foundation Design: Theory and Practice, Professor N. S. V. Kameswara Rao covers the key aspects of the subject, including principles of testing, interpretation, analysis, soil-structure interaction modeling, construction guidelines, and applications to rational design. Rao presents a wide array of numerical methods used in analyses so that readers can employ and adapt them on their own. Throughout the book the emphasis is on practical application, training readers in actual design procedures using the latest codes and standards in use throughout the world. * Presents updated design procedures in light of revised codes and standards, covering: * American Concrete Institute (ACI) codes * Eurocode 7 * Other British Standard-based codes including Indian codes * Provides background materials for easy understanding of the topics, such as: * Code provisions for reinforced concrete * Pile design and construction * Machine foundations and construction practices * Tests for obtaining the design parameters * Features subjects not covered in other foundation design texts: * Soil-structure interaction approaches using analytical, numerical, and finite element methods * Analysis and design of circular and annular foundations * Analysis and design of piles and groups subjected to general loads and movements * Contains worked out examples to illustrate the analysis and design * Provides several problems for practice at the end of each chapter * Lecture materials for instructors available on the book's companion website Foundation Design is designed for graduate students in civil engineering and geotechnical engineering. The book is also ideal for advanced undergraduate students, contractors, builders, developers, heavy machine manufacturers, and power plant engineers. Students in mechanical engineering will find the chapter on machine foundations helpful for structural engineering applications. Companion website for instructor resources: www.wiley.com/go/rao
The Revised 8th Edition of Steel Designers' Handbook is an invaluable tool for all practising structural, civil and mechanical engineers as well as engineering students at university and TAFE in Australia and New Zealand. It has been prepared in response to changes in the design Standard AS 4100, the structural Design Actions Standards, AS /ANZ 1170, other processing Standards such as welding and coatings, updated research as well as feedback from users. This edition is based on Australian Standard (AS) 4100: 1998 and subsequent amendments. The worked numerical examples in the book have been extensively revised with further examples added. The worked examples are cross-referenced to the relevant clauses in AS 4100: 1998.
This major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibration response; determination of frequencies and mode shapes; forced vibration response to harmonic and general forcing functions; dynamic analysis of continuous systems;and wave propagation analysis. The key assets of the book include comprehensive coverage of both the traditional and state-of-the-art numerical techniques of response analysis, such as the analysis by numerical integration of the equations of motion and analysis through frequency domain. The large number of illustrative examples and exercise problems are of great assistance in improving clarity and enhancing reader comprehension. The text aims to benefit students and engineers in the civil, mechanical, and aerospace sectors.
Construction time constraints are partly responsible for the increasingly prevalent use of structural steel. The need for swift completed framework and fabrication is of paramount importance. This extensive manual looks at the various aspects of steel construction. It covers the full scope of structural steelwork detailing, including fundamentals, draughting practice and conventions, conventional methods of detailing components, full scale constructed facilities and computer aided practices. A number of codes have also been included for those engineers who wish to carryout in-depth study of practices where jobs are in progress.
Wind forces from extreme wind events are the dominant loading for many parts of the world, exacerbated by climate change and the continued construction of tall buildings and structures. This authoritative source, for practising and academic structural engineers and graduate students, ties the principles of wind loads on structures to the relevant aspects of meteorology, bluff-body aerodynamics, probability and statistics, and structural dynamics. This new edition covers: Climate change effects on extreme winds - particularly those from tropical cyclones, hurricanes and typhoons Modelling of potential wind vulnerability and damage Developments in extreme value probability analysis of extreme wind speeds and directions Explanation of the difference between 'return period' and 'average recurrence interval', as well as 'bootstrapping' techniques for deriving confidence limits Wind over water, and profiles and turbulence in non-synoptic winds An expanded chapter on internal pressures produced by wind for various opening and permeability scenarios Aerodynamic shaping of high- and low-rise buildings Recent developments in five major wind codes and standards A new chapter on computational fluid dynamics (CFD), as applied to wind engineering A greatly expanded appendix providing the basic information on extreme wind climates for over 140 countries and territories Additional examples for many chapters in this book
This title discusses a broad range of issues related to the use of computed tomography in geomaterials and geomechanics. The contributions cover a wide range of topics, including deformation and strain localization in soils, rocks and sediments; fracture and damage assessment in rocks, asphalt and concrete; transport in porous media; oil and gas exploration and production; neutron tomography and other novel experimental and analytical techniques; image-based computational modeling; and software and visualization tools. As such, this will be valuable reading for anyone interested in the application of computed tomography to geomaterials from both fundamental and applied perspectives.
The first book on the subject written by a practitioner for practitioners… Geotechnical Instrumentation for Monitoring Field Performance Geotechnical Instrumentation for Monitoring Field Performance goes far beyond a mere summary of the technical literature and manufacturers#146; brochures: it guides readers through the entire geotechnical instrumentation process, showing them when to monitor safety and performance, and how to do it well. This comprehensive guide:
This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author's extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. "There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession." Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey
Following catastrophic tunnel fires that have occurred worldwide, it has become essential to gain a much better understanding of all aspects of tunnel fire safety, from basic science to acceptable risk and the law. The fundamental principles which have emerged from research and investigation in this field, form the bed-rock for decision making on how tunnels may be designed, or up-graded and operated in an acceptable way. Spanning the spectrum of current knowledge available in the field of tunnel fire safety, Handbook of Tunnel Fire Safety covers a diverse range of topics. This new edition includes new information on automatic incident detection (AID), fire suppression in tunnels, heat release rates in tunnel fires, new case studies, and all up-to-date information on probabilistic modelling and tunnel fires, and tunnel fires and human behaviour.
Learn the tools to assess product reliability! Haldar and Mahadevan crystallize the research and experience of the last few decades into the most up-to-date book on risk-based design concepts in engineering available. The fundamentals of reliability and statistics necessary for risk-based engineering analysis and design are clearly presented. And with the help of many practical examples integrated throughout the text, the material is made very relevant to today's practice. Key Features
A detailed presentation of the major role played by correctly designed and fabricated joints in the safe and reliable response of steel, composite and timber structures. The typology/morphology of connections is discussed for both conventional pinned and rigid joints and semi-rigid types. All relevant topics are comprehensively surveyed: definitions, classification, and influence of joint behaviour on overall structural response. Also presented are the application of the component method, the notion of rotational capacity, the local ductility of different types of earthquake-resistant structural joints as determined in cyclic experiments, numerical techniques for the realistic simulation of joint response, simple and moment-resistant structural connections. Readership: An incomparable resource for engineers who analyze and design steel, composite and timber structures; researchers and graduate students in the same areas.
A multidisciplinary field, encompassing both geophysics and civil engineering, geomechanics deals with the deformation and failure process in geomaterials such as soil and rock. Although powerful numerical tools have been developed, analytical solutions still play an important role in solving practical problems in this area. Analytic Methods in Geomechanics provides a much-needed text on mathematical theory in geomechanics, beneficial for readers of varied backgrounds entering this field. Written for scientists and engineers who have had some exposure to engineering mathematics and strength of materials, the text covers major topics in tensor analysis, 2-D elasticity, and 3-D elasticity, plasticity, fracture mechanics, and viscoelasticity. It also discusses the use of displacement functions in poroelasticity, the basics of wave propagations, and dynamics that are relevant to the modeling of geomaterials. The book presents both the fundamentals and more advanced content for understanding the latest research results and applying them to practical problems in geomechanics. The author gives concise explanations of each subject area, using a step-by-step process with many worked examples. He strikes a balance between breadth of material and depth of details, and includes recommended reading in each chapter for readers who would like additional technical information. This text is suitable for students at both undergraduate and graduate levels, as well as for professionals and researchers.
This book covers problems and their solution of a wide range of geotechnical topics. Every chapter starts with a summary of key concepts and theory, followed by worked-out examples, and ends with a short list of key references. It presents a unique collection of step by step solutions from basic to more complex problems in various topics of geotechnical engineering, including fundamental topics such as effective stress, permeability, elastic deformation, shear strength and critical state together with more applied topics such retaining structures and dams, excavation and tunnels, pavement infrastructure, unsaturated soil mechanics, marine works, ground monitoring. This book aims to provide students (undergraduates and postgraduates) and practitioners alike a reference guide on how to solve typical geotechnical problems. Features: Guide for solving typical geotechnical problems complementing geotechnical textbooks. Reference guide for practitioners to assist in determining solutions to complex geotechnical problems via simple methods. |
You may like...
Expression in Speech - Analysis and…
Mark Tatham, Katherine Morton
Hardcover
R7,040
Discovery Miles 70 400
Computer Simulations of Aggregation of…
Mai Suan Li, Andrzej Kloczkowski, …
Hardcover
R4,810
Discovery Miles 48 100
Spatial Dynamics and Ecology of Large…
N. Samba Kumar, K. Ullas Karanth, …
Paperback
R2,634
Discovery Miles 26 340
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
Strengthening of Concrete Structures…
Hwai Chung Wu, Christopher D Eamon
Hardcover
|