![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Well-designed hybrid structures can combine the different performance strengths of each material. This guide focuses on design approaches for concrete structures reinforced in an unconventional way by steel profiles. It explains force transfer mechanisms at steel profile-concrete interfaces and the peculiarities of the analysis of hybrid structures, including slender members. Several types of hybrid designs are addressed: walls and columns with several embedded steel profiles, connections strengthened by steel profiles between steel, and composite or reinforced concrete members, including the specific case of shear keys connecting deep beams or flat slabs to columns. The transition zones in partly RC and partly composite columns are also covered. Design of Hybrid Structures draws on the European Smartcoco research project, of experimentation and numerical modelling, giving practical guidance for designers and introducing the subject for researchers and graduate students.
The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and four different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams under cyclic loading were also simulated using a coupled elasto-plastic-damage approach. Numerical simulations were performed at macro- and meso-level of concrete. A stochastic and deterministic size effect was carefully investigated. In the case of reinforced concrete specimens, FE calculations were carried out with bars, slender and short beams, columns, corbels and tanks. Tensile and shear failure mechanisms were studied. Numerical results were compared with results from corresponding own and known in the scientific literature laboratory and full-scale tests. "
Costing at the time GBP1.8 million to complete, the Severn Tunnel was a Victorian engineering triumph, and for over a century it remained the longest rail tunnel in Britain. Construction had begun in 1873 but came to a standstill after the workings were inundated by water in 1879. An accomplished civil engineering contractor, Thomas Andrew Walker (1828-89) had worked on railways in Canada, Russia and Africa as well as on London's new underground lines; he was therefore well qualified to complete the Severn Tunnel, which was achieved in 1886. First published in 1888, Walker's first-hand account of the problematic project remains an engaging source for railway and engineering historians, and its detailed account of the ground encountered will also interest geologists. Replete with plans and maps, reissued here is the second edition of 1890, the year following Walker's death, which is likely to have been hastened by overwork.
The fifteen chapters of this book are arranged in a logical progression. The text begins with the more fundamental material on stress and strain transformations with elasticity theory for plane and axially symmetric bodies, followed by a full treatment of the theories of bending and torsion. Coverage of moment distribution, shear flow, struts and energy methods precede a chapter on finite elements. Thereafter, the book presents yield and strength criteria, plasticity, collapse, creep, visco-elasticity, fatigue and fracture mechanics. Appended is material on the properties of areas, matrices and stress concentrations. Each topic is illustrated by worked examples and supported by numerous exercises drawn from the author's teaching experience and professional institution examinations (CEI). This edition includes new material and an extended exercise section for each of the fifteen chapters, as well as three appendices. The broad text ensures its suitability for undergraduate and postgraduate courses in which the mechanics of solids and structures form a part including: mechanical, aeronautical, civil, design and materials engineering.
Nanotechnology in Civil Infrastructure is a state-of-the art reference source describing the latest developments in nano-engineering and nano-modification of construction materials to improve the bulk properties, development of sustainable, intelligent, and smart concrete materials through the integration of nanotechnology based self-sensing and self-powered materials and cyber infrastructure technologies, review of nanotechnology applications in pavement engineering, development of novel, cost-effective, high-performance and long-lasting concrete products and processes through nanotechnology-based innovative processing of cement and cement paste, and advanced nanoscience modeling, visualization, and measurement systems for characterizing and testing civil infrastructure materials at the nano-scale. Researchers, practitioners, undergraduate and graduate students engaged in nanotechnology related research will find this book very useful.
Safety and reliability are important for the whole expected service duration of an engineering structure. Therefore, prognostical solutions for different building types are needed and uncertainties have to be handled. Life-cycle strategies to control future structural degradations by concepts of appropriate design have to be developed, in case including means of inspection, maintenance, and repair. Aspects of costs and sustainability also matter. The Cooperative Research Center for Lifetime-Oriented Design Concepts (SFB 398) at Ruhr University in Bochum combines the wide range of scientific topics between structural engineering, structural and soil mechanics and material sciences regarding structural lifetime management in this present extraordinary monolithic format. The characterization and modeling of lifetime-related external actions of multiple origin are presented in this book as well as the physical description, the modeling and the validation of material degradation. Adaptive numerical methods and simulation techniques are provided for the lifetime-oriented design concepts to forecast material and structural degradation. Stochastic aspects, mathematical optimization methods and interactions between various influences are included. Thus, a solid basis is provided for future practical use and also for standardization of structural design with respect to lifetime-prediction.
The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and four different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams under cyclic loading were also simulated using a coupled elasto-plastic-damage approach. Numerical simulations were performed at macro- and meso-level of concrete. A stochastic and deterministic size effect was carefully investigated. In the case of reinforced concrete specimens, FE calculations were carried out with bars, slender and short beams, columns, corbels and tanks. Tensile and shear failure mechanisms were studied. Numerical results were compared with results from corresponding own and known in the scientific literature laboratory and full-scale tests.
The First Southern African Geotechnical Conference was organised by the Geotechnical Division of the South African Institution of Civil Engineering (SAICE) under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) and took place at Sun City, South Africa on 5 and 6 May 2016. More than 60 papers were received from authors in South Africa, Botswana, Kenya, Tanzania, Uganda, Algeria, Austria, France, Germany, Switzerland and the United Kingdom. They represent consulting engineers and engineering geologists, contractors, academics and product specialists. The papers were grouped into the following themes: Foundations, Mining and Tailings, Modelling and Design, Site investigation, Soil Properties and Soil Reinforcement and Slopes. The wide range of topics is considered to be thoroughly representative of the current activities of the geotechnical industry in the Southern African Region.
Introductory material.- Approximate methods for analyzing nonlinear structures.- Vibration isolation.- Designing nonlinear torsional vibration absorbers.- Vibrations of beams in the elasto-plastic and geometrically nonlinear regime.- Control and exploitation of nonlinearity in smart structures. The articles in this volume give an overview and introduction to nonlinear phenomena in structural dynamics. Topics treated are approximate methods for analyzing nonlinear systems (where the level of nonlinearity is assumed to be relatively small), vibration isolation, the mitigation of undesirable torsional vibration in rotating systems utilizing specifically nonlinear features in the dynamics, the vibration of nonlinear structures in which the motion is sufficiently large amplitude and structural systems with control.
Risk and reliability analysis is an area of growing importance in
geotechnical engineering, where many variables have to be
considered. Statistics, reliability modeling and engineering
judgement are employed together to develop risk and decision
analyses for civil engineering systems. The resulting engineering
models are used to make probabilistic predictions, which are
applied to geotechnical problems.
This textbook, first published in 2006, provides the student of aerospace, civil and mechanical engineering with all the fundamentals of linear structural dynamics analysis. It is designed for an advanced undergraduate or first-year graduate course. This textbook is a departure from the usual presentation in two important respects. First, descriptions of system dynamics are based on the simpler to use Lagrange equations. Second, no organizational distinctions are made between multi-degree of freedom systems and single-degree of freedom systems. The textbook is organized on the basis of first writing structural equation systems of motion, and then solving those equations mostly by means of a modal transformation. The text contains more material than is commonly taught in one semester so advanced topics are designated by an asterisk. The final two chapters can also be deferred for later studies. The text contains numerous examples and end-of-chapter exercises.
This lively introduction to geologic fracture mechanics provides a consistent treatment of all common geologic structural discontinuities. It explores the formation, growth and interpretation of fractures and deformation bands, from theoretical, field and lab-based perspectives, bridging the gap between a general textbook treatment and the more advanced research literature. It allows the reader to acquire basic tools to interpret discontinuity origins, geometries, patterns and implications using many of the leading and contemporary concepts known to specialists in the field. Problem sets are provided at the end of each chapter, and worked examples are included within each chapter to illustrate topics and enable self-study. With all common geologic structures including joints, hydrofractures, faults, stylolites and deformation bands being discussed from a fresh perspective, it will be a useful reference for advanced students, researchers and industry practitioners interested in structural geology, neotectonics, rock mechanics, planetary geology, and reservoir geomechanics.
FirstEdition DUE TO THE necessity to save weight and materialin the design ofmodern structures and machines, stability problems have become increasingly im- portant. The classicalengineering approach to this type of problem has been characterized by the tacit assumption that structures are nongyroscopic conservative systems,that is, bythegeneraladoptionofthemethodsdeveloped for this particular case. During the last decades numerous stability problems of a more complicated nature have become important, and it has therefore become necessary to correlate the various types of problems with the ap- proaches to be used in their solution. The principal object ofthis little bookisthis correlation between the systems to be investigated and the methods to be used for this purpose, In other words, our main concern is the choice of a correct approach. It is evident that this idea renders it necessary to distinguish between the various types of problems or systems. At the same time the similarities and the connections between apparently quite different problems will become obvious, and it will be evident that there islittle differencebetween, say, the buckling of a column, thecritical speed of a turbine shaft, and the stability of an airplane, a control mechanism, or an electric circuit.
The topic of "structural control," which had already experienced some attention through publications, for example by Roorda, Yao, Yang, Abdel-Rohman, Leipholz etc., mostly in journals of ASCE, was given its fIrst international forum at the University of Waterloo, Waterloo, Ontario, Canada, via an ruTMf - Symposium held in June, 1979. This very successful event gathered experts from a variety of technical and theoretical domains in which control plays tradi tionally an essential role and was meant to present the new idea of structural control to a broad audience, thus triggering interest and commitment as well as cross-fertilization. However, the peculiarities of structural control were already sumciently well pointed out and stressed by those participants of the symposium who had devoted themselves earlier to this specwc topic for some time. The result of presentations and discussions are collected in a set of Proceedings entitled "Structural Control," published by North - Holland Publishing Company and the Solid Mechanics Division (SMD) of the University of Waterloo. The stimulation following this fIrst symposium was quite noticeable in the literature and led to the conviction of many researchers that after a reasonable period of time, a second meeting should be held to collect the fruits produced by the intermediate efforts of those working with increased emphasis on structural control. Therefore, Professors J. T. P. Yao, Department of Civil Engineering, Purdue University and H. H. E."
Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures
Civil engineering structures such as buildings, bridges, stadiums, and offshore structures play an import role in our daily life. However, constructing these structures requires lots of budget. Thus, how to cost-efficiently design structures satisfying all required design constraints is an important factor to structural engineers. Traditionally, mathematical gradient-based optimal techniques have been applied to the design of optimal structures. While, many practical engineering optimal problems are very complex and hard to solve by traditional method. In the past few decades, swarm intelligence algorithms, which were inspired by the social behaviour of natural animals such as fish schooling and bird flocking, were developed because they do not require conventional mathematical assumptions and thus possess better global search abilities than the traditional optimization algorithms and have attracted more and more attention. These intelligent based algorithms are very suitable for continuous and discrete design variable problems such as ready-made structural members and have been vigorously applied to various structural design problems and obtained good results. This book gathers the authors' latest research work related with particle swarm optimizer algorithm and group search optimizer algorithm as well as their application to structural optimal design. The readers can understand the full spectrum of the algorithms and apply the algorithms to their own research problems. "
This the fourth volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010, brings together 29 chapters on the Dynamics of Civil Structures. It presents early findings from experimental and computational investigations of Civil Structures, including studies such as Characterization of a Strongly Nonlinear Laboratory Benchmark System, A Non-destructive Technique for the Health Monitoring of Tie-rods in Ancient Buildings, Estimating Effective Prestress Force on Grouted Tendon by Impact Responses, Experimental Investigation of Dynamic Load Estimation Using Small-scale Testing, and Prediction of Prestress Force on Grouted Tendon by Experimental Modal Analysis.
In this volume scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar to membranes, but having a compression stiffness). In addition, phase transitions in shells and refined shell thermodynamics are discussed. The chapters of this book are the most exciting contributions presented at the EUROMECH 527 Colloquium "Shell-like structures: Non-classical Theories and Applications" held in Wittenberg, Germany.
Thomas Stevenson (1818 1887) was the son of the engineer Robert Stevenson, and father of the writer Robert Louis Stevenson. Like his brothers David and Alan, he became a lighthouse designer, being responsible for over thirty examples around Scotland. Throughout his career he was interested in the theory as well as the practice of his profession, and published over sixty articles on engineering and meteorology. He was an international expert on lighthouses and harbour engineering. This work was first published in 1864 as a development of his article on harbours in the eighth edition (1857) of the Encyclopaedia Britannica, and considerably expanded in a second edition of 1874 which is reprinted here. Stevenson studied how the wind, waves and tides would act on the coastline and man-made structures, and the design of each harbour needed to take a wide range of factors into consideration.
Structural health monitoring (SHM) has emerged as a prominent research area in recent years owing to increasing concerns about structural safety, and the need to monitor and extend the lives of existing structures. Structural Health Monitoring Using Genetic Fuzzy Systems elaborates the process of intelligent SHM development and implementation using the evolutionary system. The use of a genetic algorithm automates the development of the fuzzy system, and makes the method easy to use for problems involving a large number of measurements, damage locations and sizes; such problems being typical of SHM. The ideas behind fuzzy logic, genetic algorithms and genetic fuzzy systems are also explained. The functionality of the genetic fuzzy system architecture is elucidated within a case-study framework, covering: * SHM of beams; * SHM of composite tubes; and * SHM of helicopter rotor blades. Structural Health Monitoring Using Genetic Fuzzy Systems will be useful for aerospace, civil and mechanical engineers working with structures and structured components. It will also be useful for computer scientists and applied mathematicians interested in the application of genetic fuzzy systems to engineering problems.
The compaction guide to greater profits, less hassle. Boost your
bottom line with the expert, efficient soil compaction techniques
and technological solutions in this fully updated Second Edition.
This revision will provide the contractor, fill inspector, and
geotechnical engineer with greater coverage of environmental
topics, including.
It is now more than twenty years since a proposal was first mooted to hold an international tunnelling symposium in Britain. At the time of the first symposium, held in London in 1976, the Channel Tunnel pro ject had just been shelved. Last weekend a charity walk was held in the finished tunnel, which will be open for business later in the year. Tunnels have figured prominently, and at times spectacularly, in the development of national and international links and it is hoped that such links gather pace in the future. It is particularly pleasing that Alastair Biggart of Storebrelt has agreed to deliver the twenty-sixth Sir Julius Wernher Memorial Lecture of the Institution of Mining and Metallurgy, entitled 'The changing face of tunnelling', at the start of this event. * Although almost every edition of the technical journals on tunnelling reports another GBP1 billion scheme somewhere in the world, it would be unfair of me to suggest that tunnelling is restricted to these prestigious schemes for major transport links. Much of the work that makes mod ern life possible receives hardly a mention outside the technical press and one suspects that society at large applies the 'out of sight, out of mind' attitude even more readily to underground construction than it does to other forms of engineering. Clearly, there is a contiiming need to improve the capacity and performance of our infrastructure, while hav ing a careful regard for the environment.
There is an increasing number of buildings that require informed decisions to be made about their continued safety and serviceability. Although social and economic issues are often all-important influences, the technical issues nevertheless need to be addressed objectively, efficiently and reliably. This book shows how monitoring the physical behaviour of a structure can assist the engineer to meet these conditions when making an assessment. The book is aimed primarily at the practising engineer charged with making recommendations in respect of safety and serviceability. By the same token, it will be of value to the client specifying a brief for assessment or evaluating the report of an investigation which involves monitoring. The book will also be one of reference for those engaged in research involving monitoring, and an aid to the advanced student who needs to understand better the full-scale performance in service of building structures. The need to assess safety and serviceability may arise for a variety of reasons, ranging from problems developing in service to change of use or the introduction of innovative features at the design stage. These reasons are explored in the first chapter which establishes a philosophy by which the assessing engineer can determine appropriate courses of action. Observations and measurements which do not address the real issues are worthless but too much information which cannot be effectively digested and interpreted is also not useful.
This 2006 book presents a systematic introduction to the theory of parametric stability of structures under both deterministic and stochastic loadings. A comprehensive range of theories are presented and various application problems are formulated and solved, often using more than one approach. Investigation of an elastic system's dynamic stability frequently leads to the study of dynamic behaviour of the solutions of parametrically excited systems. Parametric instability or resonance is more dangerous than ordinary resonance as it is characterised by exponential growth of the response amplitudes even in the presence of damping. The emphasis in this book is on the applications and various analytical and numerical methods for solving engineering problems. The materials presented are as self-contained as possible, with all of the important steps of analysis provided in order to make the book suitable as a graduate-level textbook and especially for self-study.
The necessity to save steel leads to a marked tendency towards thin-walled structures. Such structures are made of thin plating, the behaviour - and, of course, design - of which is very significantly affected by stability phenomena. In fact, with up-to-date thin-walled steel plated structures, it is very frequently the point of view of stability that governs the design. So it is not astonishing that the attention of a great number of research teams in various parts of the world has been for a good many years directed to investigations into numerous aspects of the buckling behaviour of steel plated structures. However, the current problems of buckling research, which require to account for the effect of initial imperfections, post-buckled behaviour and plastic reserve of strength (this leading in theoretical research to the necessity to solve boundary value problems of geometrically and physically non-linear partial differential equations, and in experimental studies to conduct experiments on full-size test girders) are very complex and time-consuming. Then it is beyond the means of one investigator, or even of one research team, to deal successfully with such problems and, conse quently, effective cooperation is indispensable. This was also the reason for the initiation of a fruitful collaboration between the first author of this book (Assoc. Prof. J. Djubek, D. Sc. ) and the third author (Assoc. Prof. M. Skaloud, D. Sc." |
You may like...
MCU - The Reign Of Marvel Studios
JoAnna Robinson, Dave Gonzales
Paperback
The American Song Book - The Tin Pan…
Philip Furia, Laurie J. Patterson
Hardcover
R3,594
Discovery Miles 35 940
Spirit of Africa - The Call of the Wild…
Scott Ramsay
Hardcover
|