![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This volume contains the papers presented at the 9th International Symposium on Rock Fragmentation by Blasting, held in Granada, Spain, 13-17 August 2009. A state-of-the-art collection of articles on developments in rock blasting and explosives engineering, with contributions on rock characterization, explosives and initiation systems, blast design and monitoring, fragmentation assessment, numerical modeling, vibrations from blasting, environmental and economical aspects of rock blasting, and more. Containing unique knowledge, case studies, ideas and insights, this volume is must-have literature for researchers and practitioners in the field of explosives and blasting.
The spatial variation of seismic ground motions denotes the differences in the seismic time histories at various locations on the ground surface. This text focuses on the spatial variability of the motions that is caused by the propagation of the waveforms from the earthquake source through the earth strata to the ground surface, and it brings together the various aspects underlying this complicated phenomenon. Topics covered include: Evaluation of the spatial variability from seismic data recorded at dense instrument arrays by means of signal processing techniques Presentation of the most widely used parametric coherency models, along with brief descriptions of their derivation Illustration of the causes underlying the spatial variation of the motions and its physical interpretation Estimation of seismic ground-surface strains from single station data, spatial array records, and analytical methods Introduction of the concept of random vibrations as applied to discrete-parameter and continuous structural systems on multiple supports Generation of simulations and conditional simulations of spatially variable seismic ground motions Overview of the effects of the spatial variability of seismic motions on the response of long structures, such as pipelines, bridges and dams, with brief descriptions of select seismic codes that incorporate spatial variability issues in their design recommendations This book may serve as a tutorial and/or reference for graduate students, researchers and practicing engineers interested in advancing the current state of knowledge in the analysis and modeling of the spatial variation of the seismic ground motions, or utilizing spatially variable excitations in the seismic response evaluation of long structures.
Due to strong potential applications and more demanding requirements imposed upon long and thick cylindrical structures, there has been increasing research and development activities during recent years in the field of vibration and passive vibration control of these types of structures. An important step in the study of cylindrical structures is the determination of their vibration modal characteristics. This modal information plays a key role in the design and vibration suppression of these structures when subjected to dynamic excitations. Most reported studies on the dynamic response of cylindrical structures have been restricted to the application of the shell theories. These theories are based on a number of simplifying assumptions. The most important of which is, the considered shell must be relatively thin to assume constant stresses within the cylinder. Therefore, due to this limitation, shell theories are inadequate to accurately describe all possible vibration modes in thick cylindrical structures. The primary scope of this book is to address these problems by applying the theory of elasto-dynamics.
Put a New Class of Structural Composites to Use Real Solutions for Predicting Load Initially designed as thermal barrier materials for aerospace applications and fusion reactors, functionally graded materials (FGMs) are now widely employed as structural components in extremely high-temperature environments. However, little information is commonly available that would allow engineers to predict the response of FGM plates and shells subjected to thermal and mechanical loads. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells is the first book devoted to the geometrically nonlinear response of inhomogeneous isotropic and functionally graded plates and shells. Concerned that the high loads common to many structures may result in nonlinear load deflection relationships due to large deformations, author Hui-Shen Shen has been conducting investigations since 2001, paying particular attention to the nonlinear response of these plates and shells to nonlinear bending, postbuckling and nonlinear vibration. Nearly all the solutions presented are the results of investigations conducted by the author and his collaborators. The rigor of these investigative procedures allows the results presented within these pages to stand as a benchmark against which the validity and accuracy of other numerical solutions may be measured
Proper treatment of structural behavior under severe loading - such as the performance of a high-rise building during an earthquake - relies heavily on the use of probability-based analysis and decision-making tools. Proper application of these tools is significantly enhanced by a thorough understanding of the underlying theoretical and computational concepts as provided by this book. Detailing the computational aspects of stochastic analysis within the field of structural mechanics, this book first presents a few motivating examples that demonstrate the various random effects within the context of simple structural analysis models. It moreover briefly reviews the fundamental concepts from continuum mechanics and puts them in the perspective of modern numerical tools, such as the finite element method. More advanced topics are developed step by step while gradually increasing the complexity of the structural and probabilistic analyses. This volume is intended for structural analysts and advanced students who wish to explore the benefits of stochastic analysis. It will provide researchers and decision makers working on structural and infrastructural systems with the necessary probabilistic information needed for strategic developments in construction, inspection and maintenance.
This book brings together a comprehensive and up-to-date presentation of the main scientific and technological aspects of limestone mining. The book discusses how to excavate limestone from surface mines including the nuances of production and commercial aspects.It addresses topical issues related with the quarrying of limestone and environmental protection measures adopted in mining and manufacturing. The chapters in this book describe planning and designing of mining processes to produce limestone that meets with market requirements and customer specifications. The book also discusses the environmental stresses caused by mining as an industrial activity and their ramifications and remedies. The book includes case studies from different geo-mining environments. The contents of this book will be useful to professionals, researchers, and policy makers alike.
Increases in computer power have now enabled engineers to
combine materials science with structural mechanics in the design
and the assessment of concrete structures. The techniques developed
have become especially useful for the performance assessment of
such structures under coupled mechanistic and environmental
actions. This allows effective management of infrastructure over a
much longer life cycle, thus satisfying the requirements for
durability and sustainability.
This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.
A presentation of the theory behind the Rayleigh-Ritz (R-R) method, as well as a discussion of the choice of admissible functions and the use of penalty methods, including recent developments such as using negative inertia and bi-penalty terms. While presenting the mathematical basis of the R-R method, the authors also give simple explanations and analogies to make it easier to understand. Examples include calculation of natural frequencies and critical loads of structures and structural components, such as beams, plates, shells and solids. MATLAB codes for some common problems are also supplied.
This book provides an overview on the latest advances in the synthesis, properties and applications of geopolymers reinforced with natural fibres such as pulp fibre, cotton, sisal, flax and hemp. The influence of adding various natural fibres and nanofillers on the mechanical properties of these composites is discussed. Potential challenges and future directions of these composites are highlighted and addressed. The content of this book caters to students, researchers and academics who are interested in the synthesis and applications of geopolymers composites.
This collection from the 12th International Conference on Magnesium Alloys and Their Applications (Mg 2021)-the longest running conference dedicated to the development of magnesium alloys-covers the breadth of magnesium research and development, from primary production to applications to end-of-life management. Authors from academia, government, and industry discuss new developments in magnesium alloys and share valuable insights. Topics in this volume include but are not limited to the following: Primary production Alloy development Solidification and casting processes Forming and thermo-mechanical processing Other manufacturing process development (including joining and additive manufacturing) Corrosion and protection Modeling and simulation Structural, functional, biomedical, and energy applications Advanced characterization and fundamental theories Recycling and environmental issues
Although progressing very well over the last years, the design criteria for bored and auger piles are still not fully under control and in acceptable synergism with the real pile foundation behaviour. Although there has been a lot of research in the past years worldwide on deep foundation engineering, the strong and competitive market has absolutely favorized the ingenuity of the contractora (TM)s world. A striking example of this is of such developments linked ideas on energy piles; one of the key topics in this book. This book presents the current status of screw or bore pile-soil interaction findings and developments.
This book provides the reader with a review of the most relevant research on the structural characterization and seismic retrofitting of adobe construction. It offers a complete review of the latest research developments, and hence the relevance of the field. The book starts with an introductory discussion on adobe construction and its use throughout the world over time, highlighting characteristics and performance of adobe masonry structures as well as different contributions for cultural heritage conservation (Chapter 1). Then, the seismic behaviour of adobe masonry buildings is addressed, including examples of real performance during recent earthquakes (Chapter 2). In the following chapters, key research investigations on seismic response assessment and retrofitting of adobe constructions are reviewed. The review deals with the following issues: mechanical characterization of adobe bricks and adobe masonry (Chapters 3 and 4); quasi-static and shaking table testing of adobe masonry walls and structures (Chapters 5 and 6); non-destructive and minor-destructive testing for characterization of adobe constructions (Chapter 7); seismic strengthening techniques for adobe constructions (Chapter 8); and numerical modelling of adobe structures (Chapter 9). The book ends with Chapter 10, where some general conclusions are drawn and research needs are identified. Each chapter is co-authored by a group of experts from different countries to comprehensively address all issues of adobe constructions from a worldwide perspective. The information covered in this book is fundamental to support civil engineers and architects in the rehabilitation and strengthening of existing adobe constructions and also in the design of new adobe buildings. This information is also of interest to researchers, by providing a summary of existing research and suggesting possible directions for future research efforts.
Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.
In recent years knowledge of concrete and concrete structures has increased, as has its applications. New types of concrete challenged scientists and engineers, and ecological constraints encouraged the implementation of life cycle design of concrete structures, moving the focus more and more to maintenance and uprating of structures. And since buildings are not only designed for safety and serviceability, but also for flexibility and adaptability, the design of performance based materials and structures has become more and more important. Tailor Made Concrete Structures. New Solutions for our Society comprises the proceedings of the International fib Symposium 2008 (Amsterdam, 19-22 May 2008), and considers these new perspectives and developments, including sections on new materials (i.e. fire resisting concrete, ultra-high performance fibered concrete, textile reinforced concrete, bacteria-based self healing concrete) and codes for the future (i.e. the American P2P Iniative, fibre-reinforced polymer (FRP) applications in construction, Codes for SFRC Structures). The book includes contributions from leading scientists and professionals in concrete and concrete structures worldwide, and covers: Life cycle design Design strategies for the future Underground structures Monitoring and Inspection Diagnosis Innovative materials Codes for the future Modifying and adapting structures Architectural Concrete Developing a modern infrastructure Designing structures against extreme loads Increasing the speed of construction Tailor Made Concrete Structures. New Solutions for our Society includes the state-of-the-art in research on concrete and concrete structures, and will be invaluable to professionals, structural engineers and scientists.
The book focuses on the recent innovations in computational techniques, material and digital fabrication technology that are revolutionizing the design, analysis and construction of surface structures. Powerful analysis tools now enable the accurate prediction of structural behaviour and manufacturing processes. Material innovations in the area of cementitious and other composites, glass, or smart materials, to just name a few, are challenging architects to find appropriate forms and applications. Digitally supported fabrication technology has taken a quantum leap since the time of the master shell builders 40 years ago, unfolding new potential to realize complex structural shapes in new and innovative ways. These innovations are presented in the context of an in-depth introduction to the fundamentals of surface structures providing the necessary knowledge for the successful design of shells and tensile systems in a broad variety of materials. Many of the principles are demonstrated using new material of some of the masterpieces in surface architecture. The book is structured into three parts. The first part familiarizes the reader with the topic of surface structures. It provides a historic overview and explains the underlying structural principles and traditional construction techniques. Part II introduces design methods, emphasizing recent developments in computational design and analysis that have greatly facilitated the design and construction of surface structures. Part III presents case studies demonstrating use of innovative and emerging materials.
Internationally, the mechanized excavation of tunnels has intensified in the last two decades, as the number of tunnels being constructed for subways and railway underpasses increases. The subject of mechanized tunnelling in urban areas has not previously received the attention that it deserves, despite there being specific hazards associated with the construction of tunnels in metropolitan areas, including poor ground conditions, water tables higher than the level of tunnels, and subsidence leading to damage to the existing structures on the surface. The application of technologies for achieving the stability of the tunnel and for minimizing surface settlement is described in this book. Accurate characterization of the ground; rigorous assessment and management of risk from design to maintenance; the correct choice of a tunnel boring machine and a plan for the advancement of the tunnel; specific excavation procedures and real-time monitoring of excavation parameters are all discussed in this thorough work.
This book comprises select proceedings of the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2020). The book focuses on the latest research developments in structural engineering, structural health monitoring, rehabilitation and retrofitting of structures, geotechnical engineering, and earthquake-resistant structures. The contents also cover the latest innovations in building repair and maintenance, and sustainable materials for rehabilitation and retrofitting. The contents of this book are useful for students, researchers, and professionals working in structural engineering and allied areas.
Building Services Engineering: Smart and Sustainable Design for Health and Wellbeing covers the design practices of existing engineering building services and how these traditional methods integrate with newer, smarter developments. These new developments include areas such as smart ventilation, smart glazing systems, smart batteries, smart lighting, smart soundproofing, smart sensors and meters. Combined, these all amount to a healthier lifestyle for the people living within these indoor climates. With over one hundred fully worked examples and tutorial questions, Building Services Engineering: Smart and Sustainable Design for Health and Wellbeing encourages the reader to consider sustainable alternatives within their buildings in order to create a healthier environment for users.
This classic and essential work has been thoroughly revised and
updated in line with the requirements of new codes and standards
which have been introduced in recent years, including the new
Eurocode as well as up-to-date British Standards. It provides: a general introduction; details of analysis and
design of a wide range of structures and examination of design
according to British and then European Codes. Highly illustrated with numerous line diagrams, tables and
worked examples, Reynolds's Reinforced Concrete Designer's Handbook
is a unique resource providing comprehensive guidance that enables
the engineer to analyze and design reinforced concrete buildings,
bridges, retaining walls, and containment structures. Written for structural engineers, contractors, consulting engineers, local and health authorities, and utilities, this is also excellent for civil and architecture departments in universities and FE colleges.
This bookcontains papers covering a wide range of studies on life-cycle performance analysis, design, maintenance, monitoring, management, and cost of civil infrastructure systems. Topics include reliability and optimization as design basis tools, monitoring systems, life-cycle cost analysis and management, bridge management systems, and quality control acceptance criteria. The book also discusses seismic reliability analysis of deteriorating structures, bridge inspection strategies, life-cycle cost analysis of structures on a network level, optimal risk-based design of infrastructures, updating bridge reliability using load monitoring data and statistics of extremes, rehabilitation of bridges, and lifetime analysis and structural repair of civil infrastructure systems.
A new analytical method that uses the capacity axis of a section to determine its minimum capacity for biaxial bending as well as provide the reference for equilibrium of external and internal forces has been developed. Introducing this method, Structural Analysis: The Analytical Method illustrates the procedures for predicting the capacities of circular and rectangular sections in concrete and steel materials. By applying basic mathematics to the standard principles in structural analysis, the author derived for the first time all the equations required for solving the true capacity of circular and rectangular sections in structural design. Previous authors have been unable to employ basic mathematics and thus resorted to approximate methods, such as the standard interaction formula for biaxial bending or more sophisticated methods illustrated in current literature on the subject of determining the capacity of above structural sections. The book begins with a discussion of the capacities of rectangular and circular footing foundation for a given allowable soil-bearing pressure followed by the author's latest integration of the Boussinesq's elastic equation for the dispersion of surface loads in determining the exact average pressure to use in the standard soil settlement formula. The author provides all the equations and tabulated values of key point's capacities of commercially-produced steel pipe, rectangular tubing, and steel I-sections. He then lists the derived equations for the determination of the ultimate strength capacity curve of reinforced concrete columns and concrete-filled tubular columns without using the rectangular stress block method of analysis. Elucidating an elegant, straightforward, and precise method, thus limiting guesswork, this book makes it easier to confirm the adequacy and safety of designs by direct comparison of the external loads to the internal capacities of circular and rectangular sections in structural analysis and design.
Civil Engineering has recently seen enormous progress in the core field of the construction of deep foundations. This book is the result of the International Workshop on Recent Advances in Deep Foundations (IWDPF07), which was held in Yokosuka, Japan from the 1st to the 2nd of February, 2007. Topics under discussion in this book include recent research achievements and case histories; and current advances in the applied aspects of deep foundations, such as reliability-based design, field tests and experimental field work. The book also features the latest numerical simulation methods and theoretical findings. There are nine keynote lectures, focusing on foundation engineering in different parts of the world, and thirty-three state-of-the-art papers from eminent international experts. The techniques covered include sheet piles, piles, pile-ground improvement and ground improvement, while dynamic aspects and design are also discussed.. This book is intended for an international audience of researchers and professionals in soil and foundation engineering.
Applying advanced structural and reliability assessment to the design, fabrication and operation of marine structures boosts public and commercial confidence and increases the competitiveness of waterborne transportation. Advancements in Marine Structures draws on recent experience and progress in the analysis and design of marine structures, exploring a full range of methods and modelling procedures and relates the practical application of these methodologies to real structures. The book contains papers presented at the first MARSTRUCT International Conference, held in Glasgow, UK, from 12th to 14th March 2007. The topics include: Methods and Tools for Loads and Load Effects; Methods and Tools for Strength Assessment; Experimental Analysis of Structures; Materials and Fabrication of Structures; Methods and Tools for Structural Design and Optimisation; and, Structural Reliability, Safety and Environmental Protection. The book will be of special interest to academics, researchers and consultants in marine structures and related areas.
The construction materials industry is a major user of the world's resources. While enormous progress has been made towards sustainability, the scope and opportunities for improvements are significant. To further the effort for sustainable development, a conference on Sustainable Construction Materials and Technologies was held at Coventry University, Coventry, U.K., from June 11th - 13th, 2007, to highlight case studies and research on new and innovative ways of achieving sustainability of construction materials and technologies. This book presents selected, important contributions made at the conference. Over 190 papers from over 45 countries were accepted for presentation at the conference, of which approximately 100 selected papers are published in this book. The rest of the papers are published in two supplementary books. Topics covered in this book include: sustainable alternatives to natural sand, stone, and Portland cement in concrete; sustainable use of recyclable resources such as fly ash, ground municipal waste slag, pozzolan, rice-husk ash, silica fume, gypsum plasterboard (drywall), and lime in construction; sustainable mortar, concrete, bricks, blocks, and backfill; the economics and environmental impact of sustainable materials and structures; use of construction and demolition wastes, and organic materials (straw bale, hemp, etc.) in construction; sustainable use of soil, timber, and wood products; and related sustainable construction and rehabilitation technologies.
Covers theory and background of local buckling, presenting simple design calculations which address this intriguing phenomenon. Attempts to master the process of buckling are described, citing both successes and failures. A number of failure case studies are presented as well. The final section of the book presents easy-to-follow design examples which conform to the latest Eurocode. Intended to introduce senior students in Bridge and Structural Engineering to the phenomenon of buckling, with special focus on thin-walled plated bridge girders. Suitable as a course instruction guide for its highly visual and descriptive style. Moreovere a good reference on buckling for practising and consulting engineers. |
![]() ![]() You may like...
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,750
Discovery Miles 27 500
Seismic Evaluation, Damage, and…
Iman Mansouri, Paul O. Awoyera
Paperback
R4,737
Discovery Miles 47 370
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,401
Discovery Miles 54 010
Circles in the Sky - The Life and Times…
Richard G. Weingardt
Paperback
|