![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter e that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.
Commissioned by the Cabinet Office and using hitherto untapped
British Government records, this book presents an in-depth analysis
of the successful project of 1986-94.
The transition from national standards for concrete structural
design to Eurocode EN 1992 is the biggest change to concrete design
for decades.
Many important advances in designing modern structures have occurred over the last several years. Structural engineers need an authoritative source of information that thoroughly and concisely covers the foundational principles of the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Principles of Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of structural design. This book systematically explores the fundamental concepts underlying structural design for each major type of structural material. Expert contributors authoritatively discuss steel structures, steel frame design using advanced analysis, cold-formed steel structures, reinforced concrete structures, prestressed concrete, and masonry, timber, and aluminum structures. For each construction material, the chapter explores the material properties, design considerations, and structural principles affecting overall design. Reflecting recent advances, the book includes two chapters devoted to reliability-based structural design and structure configuration based on wind engineering. Computational methods and simulation techniques illustrate the concepts of reliability-based design, while examples of real bridges highlight the application of wind engineering principles and methods. Principles of Structural Design couples fundamental concepts with advanced practices. It is an ideal introduction for newcomers to the field as well as a perfect review and quick-reference guide for seasoned engineers.
Conservation of monuments and historic sites is one of the most challenging problems facing modern civilization. It involves various cultural, humanistic, social, technical, economical and administrative factors, intertwining in inextricable patterns. The complexity of the topic is such that guidelines or recommendations for intervention techniques and design approaches are difficult to set. The Technical Committee on the Preservation of Monuments and Historic Sites (named TC19) was established by the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) in 1981, is supported by the Italian Geotechnical Society (AGI), and renamed TC301 in 2010. Geotechnics and Heritage, collects relevant case histories on the role of geotechnical engineering in the preservation of monuments and historic sites, and is an addition to the Proceedings of the two International Symposia organized by the Committee in Napoli in 1994 and 2013. The contributions in the book prove the significant role geotechnical engineering plays in conservation of historic building and monuments.
The Leaning Tower of Pisa is known worldwide for its five-degree lean. The Tower is the Campanile of the Cathedral, which together with the Baptistry and Cemetery form a breath-taking collection of monuments which are regarded as supreme examples of early Renaissance Romanesque architecture. In March 1990 the Tower was closed to the public as it was declared unsafe and close to collapse. A Commission was set up by the Italian Government with the task of developing and implementing stabilization measures. This book begins with a brief description of the history of the Tower and its construction. The reader is then introduced to the huge challenges faced by the Commission in designing and implementing appropriate stabilization measures whilst at the same time satisfying the demanding requirements of conserving a world heritage monument. In particular, two historical studies are described which proved to be most valuable in arriving at suitable stabilization measures. The first was a deduction of the history of inclination of the tower during and subsequent to construction. The results of this study were used to calibrate a sophisticated numerical model of the tower and the underlying very soft ground which proved vital in evaluating the effectiveness of various stabilization schemes. The second study was of measurements of movement made since 1911. This latter study revealed an unexpected mechanism of foundation movement which proved crucial in developing the temporary and permanent stabilization measures and which resulted in the Tower being re-opened to the public in June 2001. The book will appeal to both professionals and students in the fields of Architecture and Civil Engineering. It will also interest specialised audiences of geotechnical engineers and conservation architects. It may also be of wider interest to anyone planning to visit Pisa or who is intrigued as to what caused the Tower to lean and how it was stabilized.
These three volumes present the proceedings of the CIB Working Commission 65 - Organization and Management of Construction Symposium. Papers were being invited from international researchers, leading industrialists and national political figures associated with the built environment, and cover organization and management issues in engineering, architecture, planning and building.
This series will present twenty short, sharply-focused tracts, each one covering one of the many aspects of concrete technology: materials, design, construction, testing, and other significant aspects. Volume 1 provides a complete overview of the mineral admixtures used in concrete, including silica fume, slag, rice-husk ash, fly ash, and natural pozzolans. This book will include the mineral and chemical composition of the admixtures, their chemical reactions with cement and as a method of recycling.
"Performance-Based Optimization of Structures" introduces a method
to bridge the gap between structural optimization theory and its
practical application to structural engineering. The
Performance-Based Optimization (PBO) method combines modern
structural optimisation theory with performance based design
concepts to produce a powerful technique for use in structural
design. This book provides the latest PBO techniques for achieving
optimal topologies and shapes of continuum structures with stress,
displacement and mean compliance constraints.
With increasingly sophisticated structures involved in modern engineering, knowledge of the complex vibration behavior of plates, shells, curved membranes, rings, and other complex structures is essential for today's engineering students, since the behavior is fundamentally different than that of simple structures such as rods and beams. Now in its third edition, Vibrations of Shells and Plates continues to lay an analytical and computational foundation for the study of vibration in these structures. Vibrations of Shells and Plates, Third Edition is updated with substantial new material reflecting advances made over the past decade since publication of the second edition. The author demonstrates how the vibration behavior of shells and plates differs from that of beams through theoretical development and examples. He also explains complicating effects on vibration such as the influence of rotation, shear, rotatory inertia, moment loading, residual stresses, and composite layers. New material includes the parabolic cylindrical shell, natural frequencies and modes, power series method, and explicit strain energy equations for many standard cases. Intended for graduate and post-graduate study in vibration, acoustics, noise control, and stress analysis, this textbook provides a strong foundation in vibration theory, offers analytical solutions that illustrate actual behavior of structures, and prepares students to perform finite element and finite difference analysis.
The Railway Research Institute (Instytut Kolejnictwa) in Warsaw was established in 1951 and was, until 2000, part of the Polish State Railways (PKP). At present, it serves as an independent entity, it is subordinated to the minister responsible for transport. Since its inception, the Institute has been the centre of competence for technology, technique and organization of operation and services in rail transport, particularly in respect to innovation. One of its fundamental tasks also includes activities connected with safety which are carried out in close cooperation with the National Safety Authority, i.e. the Office of Rail Transport. At the same time the Institute participated in the process of upgrading and modernization of the rail network in Poland. Experience in high speed rail, gained as a result of international cooperation and basing on the effort to increase speed on railway lines in Poland (so far 200 km/h), is included in the monograph "Koleje Duzych Predkosci w Polsce" (High Speed Rail in Poland) published in 2015 for the benefit of the Polish reader. This monograph aims at reaching an international audience of experts so as to present Polish determinants of HSR implementation. In order to elaborate this monograph, apart from specialists from the Railway Research Institute, experts from other research and academic centres were invited. Not only presenting a wide range of problems connected with future construction of High Speed Lines in Polish conditions, but also a number of operational ones. The authors have created a reference work of universal character, solving problems in order to build and operate high speed rail systems in countries on a similar level of development as Poland. Features: providing requirements for design and upgrade of engineering works on High Speed Rail development information on restructuring and building railway lines for countries starting to develop a High Speed Rail system dealing with organizational, engineering, socioeconomic and economic demands for transport services and the formation of human resources for constructing and operting a High Speed Rails system. Presenting these problems on the international arena will facilitate future cooperation and application of world experience to create HSR in Poland and integrate the Polish HSR network into the international one.
Geotechnical Engineering Calculations and Rules of Thumb, Second Edition, offers geotechnical, civil and structural engineers a concise, easy-to-understand approach to selecting the right formula and solving even most difficult calculations in geotechnical engineering. A "quick look up guide", this book places formulas and calculations at the reader's finger tips. In this book, theories are explained in a "nutshell" and then the calculation is presented and solved in an illustrated, step-by-step fashion. In its first part, the book covers the fundamentals of Geotechnical Engineering: Soil investigation, condition and theoretical concepts. In the second part it addresses Shallow Foundations, including bearing capacity, elastic settlement, foundation reinforcement, grillage design, footings, geogrids, tie and grade beams, and drainage. This session ends with a chapter on selecting foundation types. The next part covers Earth Retaining Structures and contains chapters on its basic concepts and types, gabion walls and reinforced earth walls. The following part covers Geotechnical Engineering Strategies providing coverage of softwares, instrumentation, excavations, raft design, rock mechanics, dip angle and strike, rock stabilization equipment, soil anchors, tunnel design, seismology, geosynthetics, and slurry cutoff walls. The final part is on Pile Foundations including content on design on sandy soils, clay soils, pin piles, negative skin friction, caissons and pile clusters. In this new and updated edition the author has incorporated new software calculation tools, current techniques for foundation design, liquefaction information, seismic studies, laboratory soil tests, geophysical techniques, new concepts for foundation design and Dam designs. All calculations have been updated to most current material characteristics available in the market. Practicing Geotechnical, Civil and Structural Engineers may find in this book an excellent companion to their day-to day work, benefiting from the clear and direct calculations, examples, and cases. Civil Engineering students may find particular interest in the concise theory presented in the beginning of each chapter.
This volume contains papers presented at the 11th scientific meeting of the IFIP working group on reliability and optimization of structural systems. The purpose of Working Group 7.5 is to promote modern structural system reliability and optimization theory and its applications; stimulate research, development, and application; assist and advance research and development; further the dissemination and exchange of information; and encourage education. The main themes include structural reliability methods and applications, engineering risk analysis and decision-making, new optimization techniques and various applications in civil engineering.
The interaction between engineering and the law is undergoing dramatic changes. Product liability, laws have been introduced in Japan, patent claims over living organisms have been made in bioengineering and the differing national laws of copyright protection and liability are in the process of harmonisation, especially in the European Union. The pace and complexity of these changes make it essential for technologists, lawyers, engineers and insurance experts to establish a common basis for understanding, co-operation and exchange of expertise. The recently founded International Society for Technology, Law and Insurance aims to foster such co-operation. This volume features 46 selected contributions which address various topical issues and the law. The most important issues relate to engineering risks, quality assurance and assessment and legal implications assiciated with them. Recent failure cases are explained and the technical, legal and insurance-related issues discussed in detail.
This volume consists of papers presented at the International Workshop on Concrete Shear in Earthquake, held at the University of Houston, Texas, USA, 13-16 January 1991.
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and researchers involved in earthquake engineering. With an entire chapter dedicated to seismic resistant design through supplemental damping and structural control, this volume includes important advances in the characteristics of earthquake ground motions, behavior and design of structures, seismic design of non-structural systems, and more.
The Audience in Everyday Life argues that a media audience cannot be studied in front of the television alone - their interaction with media does not simply end when the set is turned off. Instead, we must study the daily lives of audiences to find the undercurrents of media influence in everyday life. S. Elizabeth Bird offers a series of empirically based audience studies of phenomena that include media scandals, fan culture, representations of race and ethnicity, tabloid journalism and runaway media hoaxes. Bird provides a host of useful tools and methods for scholars and students interested in the ways media is consumed in everyday life.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and - despite the higher material costs - overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by the top experts in the field of concrete structures, namely those currently active in the field's leading and truly international scientific and technical association: the International Federation of Structural Concrete (fib) www.fib-international.org. Audience: Practicing engineers and firms, academics, researchers and graduate students, will all find the book timely, informative and very interesting.
This book treats the subject of local scour around different kinds of marine structures, exposed to waves and/or currents. The first, major part of the book is devoted to marine pipelines, describing in detail all kinds of scour scenarios, and also making recommendations for scour protection. Other kinds of structures considered are single piles (slender or large), groups of piles, complex subsea structures, breakwaters, and seawalls. The scour due to ship propellers is also described. The book deals mainly with the scour in noncohesive sediment but, whenever possible, available literature on the scour in finer sediment has been incorporated. In addition, a chapter on the impact of wave-induced liquefaction is included.The authors' aim is to describe in detail the hydrodynamic processes causing the erosion. With a hydrodynamic understanding, it is easier for the consulting engineer to predict scour in those many cases where physical model tests are not available.
|
You may like...
Natural Locomotion in Fluids and on…
Stephen Childress, Anette Hosoi, …
Hardcover
R2,691
Discovery Miles 26 910
Functional Numerical Methods…
george A. Anastassiou, Ioannis K. Argyros
Hardcover
Binary Bullets - The Ethics of…
Fritz Allhoff, Adam Henschke, …
Hardcover
R3,569
Discovery Miles 35 690
Complex Networks in Software, Knowledge…
Milos Savic, Mirjana Ivanovic, …
Hardcover
|