![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
The First Conference on Engineering Probability in Flood Defense was orga nized by the Department of Mathematics and Informatics of the Delft U niver sity of Technology and the Department of Industrial Engineering and Opera tions Research of the University of California at Berkeley, and was held on June 1,2 1995 in Delft. Groups at Berkeley and Delft were both deeply engaged in modeling deterioration in civil structures, particularly flood defense structures. The plans for the conference were well under way when the dramatic floods in The Netherlands and California in the winter of 1994-1995 focused world attention on these problems. The design of civil engineering structures and systems is essentially an example of decision making under uncertainty. Although the decision making part of the process is generally acknowledged, the uncertainty in variables and param eters in the design problem is less frequently recognized. In many practical design procedures the uncertainty is concealed behind sharp probabilistic de sign targets like 'once in a thousand years' combined with a standardized use of safety factors. The choice of these probabilistic design targets, however, is based on an assessment of the uncertainty of the variable under consideration, and on its assessed importance. The value of the safety factor is governed by similar considerations. Standard practice is simply accu ulated experience and engineering judgment. In light of the great number of civil engineering structures that function suc-. cessfully, one may say that this standard practice has proven itself broadly satisfactory."
Steel frames are used in many commercial high-rise buildings, as well as industrial structures, such as ore mines and oilrigs. Enabling construction of ever lighter and safer structures, steel frames have become an important topic for engineers. This book, split into two parts covering advanced analysis and advanced design of steel frames, guides the reader from a broad array of frame elements through to advanced design methods such as deterministic, reliability, and system reliability design approaches. This book connects reliability evaluation of structural systems to advanced analysis of steel frames, and ensures that the steel frame design described is founded on system reliability. Important features of the this book include: fundamental equations governing the elastic and elasto-plastic equilibrium of beam, sheer-beam, column, joint-panel, and brace elements for steel frames; analysis of elastic buckling, elasto-plastic capacity and earthquake-excited behaviour of steel frames; background knowledge of more precise analysis and safer design of steel frames against gravity and wind, as well as key discussions on seismic analysis. theoretical treatments, followed by numerous examples and applications; a review of the evolution of structural design approaches, and reliability-based advanced analysis, followed by the methods and procedures for how to establish practical design formula. Advanced Design and Analysis of Steel Frames provides students, researchers, and engineers with an integrated examination of this core civil and structural engineering topic. The logical treatment of both advanced analysis followed by advanced design makes this an invaluable reference tool, comprising of reviews, methods, procedures, examples, and applications of steel frames in one complete volume.
Effectively Construct Integral Formulations Suitable for Numerical Implementation Finite Element and Boundary Methods in Structural Acoustics and Vibration provides a unique and in-depth presentation of the finite element method (FEM) and the boundary element method (BEM) in structural acoustics and vibrations. It illustrates the principles using a logical and progressive methodology which leads to a thorough understanding of their physical and mathematical principles and their implementation to solve a wide range of problems in structural acoustics and vibration. Addresses Typical Acoustics, Electrodynamics, and Poroelasticity Problems It is written for final-year undergraduate and graduate students, and also for engineers and scientists in research and practice who want to understand the principles and use of the FEM and the BEM in structural acoustics and vibrations. It is also useful for researchers and software engineers developing FEM/BEM tools in structural acoustics and vibration. This text: Reviews current computational methods in acoustics and vibrations with an emphasis on their frequency domains of applications, limitations, and advantages Presents the basic equations governing linear acoustics, vibrations, and poroelasticity Introduces the fundamental concepts of the FEM and the BEM in acoustics Covers direct, indirect, and variational formulations in depth and their implementation and use are illustrated using various acoustic radiation and scattering problems Addresses the exterior coupled structural-acoustics problem and presents several practical examples to demonstrate the use of coupled FEM/BEM tools, and more Finite Element and Boundary Methods in Structural Acoustics and Vibration utilizes authors with extensive experience in developing FEM- and BEM-based formulations and codes and can assist you in effectively solving structural acoustics and vibration problems. The content and methodology have been thoroughly class tested with graduate students at University of Sherbrooke for over ten years.
Engineering structures considered include bars, columns, struts, tubes, vessels, beams, springs and frames. The loadings imposed upon them are, typically, tension, compression and shear, bending, torsion and pressure, separately and in combination. The mechanics of such structures examine the manner in which they each bear their respective loading in a safe predictable way. This aids design considerations upon choice of material and its physical shape when seeking, say, a safe design with low weight.The presentation of chapters is intended to guide the reader from a basic to more advanced understanding of common engineering structures. Thus, the consideration of stress and strain under elastic and plastic conditions is required for a full understanding of a structure that may bend, twist and buckle as it is deflected by its loading. The approach adopted is to intersperse theory with examples and exercises that emphasise practical application. Standard analytical techniques including stress transformation, energy methods and yield criteria precede a final chapter on finite element analysis.Worked examples and exercises have been devised and compiled by the author to support the topics within each chapter. Some have been derived, with a conversion to SI units, from past examination papers set by institutions with which the author has been associated, namely: Brunel, Kingston and Surrey Universities and the Council of Engineering Institutions.The contents should serve most courses in mechanical, civil, aeronautical and materials engineering.
Engineering structures considered include bars, columns, struts, tubes, vessels, beams, springs and frames. The loadings imposed upon them are, typically, tension, compression and shear, bending, torsion and pressure, separately and in combination. The mechanics of such structures examine the manner in which they each bear their respective loading in a safe predictable way. This aids design considerations upon choice of material and its physical shape when seeking, say, a safe design with low weight.The presentation of chapters is intended to guide the reader from a basic to more advanced understanding of common engineering structures. Thus, the consideration of stress and strain under elastic and plastic conditions is required for a full understanding of a structure that may bend, twist and buckle as it is deflected by its loading. The approach adopted is to intersperse theory with examples and exercises that emphasise practical application. Standard analytical techniques including stress transformation, energy methods and yield criteria precede a final chapter on finite element analysis.Worked examples and exercises have been devised and compiled by the author to support the topics within each chapter. Some have been derived, with a conversion to SI units, from past examination papers set by institutions with which the author has been associated, namely: Brunel, Kingston and Surrey Universities and the Council of Engineering Institutions.The contents should serve most courses in mechanical, civil, aeronautical and materials engineering.
First published in 1992. Routledge is an imprint of Taylor & Francis, an informa company.
Coastal structures are an important component in any coastal protection scheme. They directly control wave and storm surge action or to stabilize a beach which provides protection to the coast.This book provides the most up-to-date technical advances on the design and construction of coastal structures and sea defenses.Written by renowned practicing coastal engineers, this edited volume focuses on the latest technology applied in planning, design and construction, effective engineering methodology, unique projects and problems, design and construction challenges, and other lesions learned.Many books have been written about the theoretical treatment of coastal and ocean structures. Much less has been written about the practical practice aspect of ocean structures and sea defenses. This comprehensive book fills the gap. It is an essential source of reference for professionals and researchers in the areas of coastal, ocean, civil, and geotechnical engineering.
This title offers a comprehensive coverage of the many facets of seismic engineering. The first half of the book is devoted to seismic phenomena and hazards, detailing the causes of earthquakes, the parameters used to characterize earthquakes, strong ground motions, seismic hazards and their evaluation, and seismic action. The second half discusses the effects of earthquakes and tools used to assess and reduce risk, including the effects of vibratory motions and induced phenomena, seismic calculations and technical aspects of prevention. The importance of keeping orders of magnitude in mind (i.e. through reasoning or very simple equations) when discussing seismic phenomena and their effects is emphasized, a task which most people overlook because of their rarity and the brevity of their manifestations.
Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd Edition provides an authoritative theoretical and experimental guide to this fast-paced, interdisciplinary area with exciting applications across a range of industries. The book begins with a detailed yet digestible consolidation of the fundamental theory relating to structural health monitoring (SHM). Coverage of fracture and failure basics, relevant piezoelectric material properties, vibration modes in different structures and different wave types provide all the background needed to understand SHM and apply it to real-world structural challenges. Moving from theory to experimental practice, the book then provides the most comprehensive coverage available on using piezoelectric wafer active sensors (PWAS) to detect and quantify damage in structures. Updates to this edition include circular and straight-crested Lamb waves from first principle, and the interaction between PWAS and Lamb waves in 1-D and 2-D geometries. Effective shear stress is described, and tuning expressions between PWAS and Lamb waves has been extended to cover axisymmetric geometries with a complete Hankel-transform-based derivation. New chapters have been added including hands-on SHM case studies
of PWAS stress, strain, vibration, and wave sensing applications,
along with new sections covering essential aspects of vibration and
wave propagation in axisymmetric geometries.
Steel and composite steel-concrete structures are widely used in modern bridges, buildings, sport stadia, towers, and offshore structures. Analysis and Design of Steel and Composite Structures offers a comprehensive introduction to the analysis and design of both steel and composite structures. It describes the fundamental behavior of steel and composite members and structures, as well as the current design criteria and procedures given in Australian standards AS/NZS 1170, AS 4100, AS 2327.1, Eurocode 4, and AISC-LRFD specifications. Featuring numerous step-by-step examples that clearly illustrate the detailed analysis and design of steel and composite members and connections, this practical and easy-to-understand text: Covers plates, members, connections, beams, frames, slabs, columns, and beam-columns Considers bending, axial load, compression, tension, and design for strength and serviceability Incorporates the author's latest research on composite members Analysis and Design of Steel and Composite Structures is an essential course textbook on steel and composite structures for undergraduate and graduate students of structural and civil engineering, and an indispensable resource for practising structural and civil engineers and academic researchers. It provides a sound understanding of the behavior of structural members and systems.
The perfect guide for veteran structural engineers or for engineers just entering the field of offshore design and construction, Marine Structural Design Calculations offers structural and geotechnical engineers a multitude of worked-out marine structural construction and design calculations. Each calculation is discussed in a concise, easy-to-understand manner that provides an authoritative guide for selecting the right formula and solving even the most difficult design calculation. Calculation methods for all areas of marine structural design and construction are presented and practical solutions are provided. Theories, principles, and practices are summarized. The concentration focuses on formula selection and problem solving. A "quick look up guide", Marine Structural Design Calculations includes both fps and SI units and is divided into categories such as Project Management for Marine Structures; Marine Structures Loads and Strength; Marine Structure Platform Design; and Geotechnical Data and Pile Design. The calculations are based on industry code and standards like American Society of Civil Engineers and American Society of Mechanical Engineers, as well as institutions like the American Petroleum Institute and the US Coast Guard. Case studies and worked examples are included throughout the book.
"Eco-efficient Construction and Building Materials" reviews ways of
assessing the environmental impact of construction and building
materials. Part one discusses the application of life cycle
assessment (LCA) methodology to building materials as well as
eco-labeling. Part two includes case studies showing the
application of LCA methodology to different types of building
material, from cement and concrete to wood and adhesives used in
building. Part three includes case studies applying LCA methodology
to particular structures and components.
The effect of corrosion in the oil industry leads to the failure
of parts. This failureresults in shutting down the plant to clean
the facility. The annual cost of corrosion to the oil and gas
industry in the United States alone is estimated at $27 billion
(According to NACE International)-leading some to estimate the
global annual cost to the oil and gas industry as exceeding $60
billion. In addition, corrosion commonly causes serious
environmental problems, such as spills and releases. An essential
resource for all those who are involved in the corrosion management
of oil and gas infrastructure, "Corrosion Control in the Oil and
Gas Industry" provides engineers and designers with the tools and
methods to design and implement comprehensive corrosion-management
programs for oil and gas infrastructures. The book addresses all
segments of the industry, including production, transmission,
storage, refining and distribution.
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book s content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field problems Automatic mesh generation Plate bending and shells Developments in meshless techniques Focusing on the core knowledge, mathematical and analytical
tools needed for successful application, "The Finite Element
Method: Its Basis and Fundamentals" is the authoritative resource
of choice for graduate level students, researchers and professional
engineers involved in finite element-based engineering
analysis.
Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.
Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions. This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil-structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D) Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability) This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.
There are various techniques to optimize either structural parameters, or structural controllers, but there are not many techniques that can simultaneously optimize the structural parameters and controller. The advantage of integrating the structural and controller optimization problems is that structure and controller interaction is taken into account in the design process and a more efficient overall design (lower control force/lighter weight) can be achieved, and also multidisciplinary design optimization can be performed. The down side is that the combined optimization problem is more difficult to formulate and solve, and computations are increased. This volume is a comprehensive treatment of dynamic analysis and control techniques in structural dynamic systems and the wide variety of issues and techniques that fall within this broad area, including the interactions between structural control systems and structural system parameters.
Project management lessons learned on the Big Dig, America's biggest megaproject, by a core member responsible for its daily operations In "Megaproject Management," a central member of the Big Dig team reveals the numerous risks, challenges, and accomplishments of the most complex urban infrastructure project in the history of the United States. Drawing on personal experience and interviews with project engineers, executive oversight commission officials, and core managers, the author, a former deputy counsel and risk manager for the Big Dig, develops new insights as she describes the realities of day-to-day management of the project from a project manager's perspective. The book incorporates both theory and practice and is therefore highly recommended to policymakers, academics, and project management practitioners. Focusing on lessons learned, this insightful coursebook presents the Big Dig as a massive case study in the management of risk, cost, and schedule, particularly the interrelation of technical, legal, political, and social factors. It provides an analysis of the difficulties in managing megaprojects during each phase and over the life span of the project, while delivering useful lessons on why projects go wrong and what can be done to prevent project failure. It also offers new ideas to enhance project management performance and innovation in our global society. This unique guide: Defines megaproject characteristics and frameworksReviews the Big Dig's history, stakeholders, and governanceExamines the project's management scope, scheduling, and cost management--including project delays and cost overrunsAnalyzes the Big Dig's risk management and quality managementReveals how to build a sustainable project through integration and change introduction
Essentials of Offshore Structures: Framed and Gravity Platforms examines the engineering ideas and offshore drilling platforms for exploration and production. This book offers a clear and acceptable demonstration of both the theory and application of the relevant procedures of structural, fluid, and geotechnical mechanics to offshore structures. It makes available a multitude of "solved problems" and "sample problems to solve" which give readers a strong understanding of the analysis and design of steel-framed and base-supported concrete gravity offshore structures. The book highlights sensible engineering applications for offshore structural design, research, and development; it can also be useful to those working in the design industry.
Separate chapters detail the factors that influence the pile embedment and concrete gravity foundation characteristics, material choice including fatigue and corrosion, estimation of ocean environmental forces that will be exerted on the offshore structures, and the analysis fundamentals that the reader needs to possess. The last two chapters give detailed insights into the analysis and design of framed and concrete gravity platform offshore structures using API code procedures. Overall, this book is a comprehensive presentation of the analysis and design of steel and concrete offshore structures.
The finite element, an approximation method for solving
differential equations of mathematical physics, is a highly
effective technique in the analysis and design, or synthesis, of
structural dynamic systems. Starting from the system differential
equations and its boundary conditions, what is referred to as a
weak form of the problem (elaborated in the text) is developed in a
variational sense. This variational statement is used to define
elemental properties that may be written as matrices and vectors as
well as to identify primary and secondary boundaries and all
possible boundary conditions. Specific equilibrium problems are
also solved.
Curing is one of those activities that every civil engineer and construction worker has heard of, but in reality does not worry about much. In practice, curing is often low on the list of priorities on the construction site, particularly when budgets and timelines are under pressure. Yet the increasing demands being placed on concrete mixtures also mean that they are less forgiving than in the past. Therefore, any activity that will help improve hydration and so performance, while reducing the risk of cracking, is becoming more important. Curing Concrete explains exactly why curing is so important and shows you how to best do it. The book covers: The fundamentals behind hydration How curing affects the properties of concrete, improving its long-term performance What curing technologies and techniques you can use for different applications How to effectively specify, provide, and measure curing in a project The author also gives numerous examples of how curing-or a lack of it-has affected concrete performance in real-world situations. These include examples from hot and cold climates, as well as examples related to high-performance concrete, performance parameters, and specifications and testing. Written for construction professionals who want to ensure the quality and longevity of their concrete structures, this book demonstrates that curing is well worth the effort and cost.
Pile Foundations are an essential basis for many structures. It is vital that they be designed with the utmost reliability, because the cost of failure is potentially huge. Covering a whole range of design issues relating to pile design, this book presents economical and efficient design solutions and demonstrates them using real world examples. Coverage includes nonlinear response of single piles to vertical or torsional loading and to cyclic lateral loading, as well as prediction of nonlinear response of lateral pile groups, vertically loaded pile groups and the design of slope stabilising piles. Most solutions are provided as closed-form expressions. Theory and Practice of Pile Foundations is:
A valuable resource for students of geotechnical engineering taking courses in foundations and a vital tool for engineers designing pile foundations.
This book is the fifth volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This volume, entitled "Tunneling and Underground Construction", covers the recent advances and technologies in tunneling and underground structure engineering. It presents the state-of-the-art planning philosophy, theories, experiments, methodologies and findings in the related areas. The importance of underground space utilization to the development of human society is also addressed. The challenges and future directions of underground engineering are highlighted. The topics include but are not limited to the tunneling and underground construction induced ground deformation, mechanical behaviors of segmental lining systems, tunneling in challenging situations, maintenance tactic and emergency counter-measures. The book may benefit researchers and scientists from the academic fields of tunneling and underground structure engineering as well as practical engineers from the industry. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.
The transition from national standards for concrete structural design to Eurocode EN 1992 is the biggest change to concrete design for decades.This new edition of Concrete Design explains the key differences between BS8110 and EN1992, and teaches the fundamentals of the design of concrete structures to comply with the Eurocodes.With many illustrations and worked examples, this accessible textbook teaches the essentials of concrete design to EN1992 to students and professionals alike.
Modeling in Geomechanics Edited by Musharraf Zaman The University
of Oklahoma, USA Giancarlo Gioda Politecnico di Milano, Italy John
Booker University of Sydney, Australia Geomechanics is an
interdisciplinary field involving the study of natural and man-made
systems with emphasis on the mechanics of various interacting
phenomena. It comprises numerous aspects of engineering and
scientific disciplines, which share common bases in mathematics,
mechanics and physics. In recent years, with the extraordinary
growth of computing power and resources, progress in the generation
of new theories and techniques for the analysis of geomechanics
problems has far surpassed their actual use by practitioners. This
has led to a gap between our ability to deal with complex,
inter-disciplinary problems in geomechanics and the actual impact
of these advances on engineering practice. This book contains
contributions from an international group of accomplished
researchers and practitioners from various branches of soil and
rock engineering, and presents the latest theoretical developments
and practical applications of modeling in geomechanics. Chapters
are grouped into four main sections: |
You may like...
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,082
Discovery Miles 50 820
Infrastructure Computer Vision
Ioannis Brilakis, Carl Thomas Michael Haas
Paperback
R3,039
Discovery Miles 30 390
Fundamentals of Multiscale Modeling of…
Wen-Jie Xia, Luis Ruiz Pestana
Paperback
R4,663
Discovery Miles 46 630
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
|