![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This text is directed at the heart of Engineering Geology where geology is used to identify potential problems arising from ground conditions. It describes how to investigate those conditions and to define an engineering response that will either avoid or reduce or even eliminate the problems revealed. The book presents the "big picture" that is so often lacking when only site details are available, but necessary for adequate engineering solutions.
A Powerful Tool for the Analysis and Design of Complex Structural Elements Finite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions presents a finite-element model of structural concrete under short-term loading, covering the whole range of short-term loading conditions, from static (monotonic and cyclic) to dynamic (seismic and impact) cases. Experimental data on the behavior of concrete at both the material and structural levels reveal the unavoidable development of triaxial stress conditions prior to failure which dictate the collapse and ductility of structural concrete members. Moreover, and in contrast with generally accepted tenets, it can be shown that the post-peak behavior of concrete as a material is realistically described by a complete and immediate loss of load-carrying capacity. Hence rational analysis and design of concrete components in accordance with the currently prevailing limit-state philosophy requires the use of triaxial material data consistent with the notion of a fully brittle material, and this approach is implemented in the book by outlining a finite-element method for the prediction of the strength, deformation, and cracking patterns of arbitrary structural concrete forms. Presents a Unified Approach to Structural Modeling Numerous examples are given that show both the unifying generality of this proposed approach and the reliability of the ensuing numerical procedure for which the sole input is the specified uniaxial cylinder compressive strength of concrete and the yield stress of the steel. This not only offers a better understanding of the phenomenology of structural concrete behavior but also illustrates, by means of suitable examples, the type of revision required for improving design methods in terms of both safety and economy. This book: Highlights the significance of valid experimental information on the behavior of concrete under triaxial stress conditions for interpreting structural behavior Describes the techniques used for obtaining valid test data and modeling concrete behavior Discusses the modeling of steel properties as well as the interaction between concrete and steel Presents numerical techniques for incorporating the material models into nonlinear finite-element analysis for the case of short-term static loading Provides numerical techniques adopted for extending the use of the numerical analysis scheme for the solution of dynamic problems Predicts the response of a wide range of structural-concrete configurations to seismic and impact excitations Using relevant case studies throughout, Finite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions focuses on the realistic modeling of structural concrete on the basis of existing and reliable material data and aids in the research and study of structural concrete and concrete materials.
Sustainable Construction Materials: Municipal Incinerated Bottom Ash discusses the global use of virgin aggregates and CO2 polluter Portland cement. Given the global sustainability agenda, much of the demand for these two sets of materials can be substantially reduced through the appropriate use of waste materials, thereby conserving natural resources, energy and CO2 emissions. Realistically, this change can only be realized and sustained through engineering ingenuity and new concepts in design. Although a great deal of research has been published over the last 50 years, it remains fragmented and ineffective. This book develops a single global knowledge-base, encouraging greater use of selected waste streams. The focus of massive systematic reviews is to encourage the uptake of recycled secondary materials (RSM) by the construction industry and guide researchers to recognize what is already known regarding waste.
Utilizes both Computer- and Hand-Based Calculations Modern practice in geomechanics is becoming increasingly reliant on computer-based software, much of which can be obtained through the Internet. In Geomechanics in Soil, Rock, and Environmental Engineering the application of these numerical techniques is examined not only for soil mechanics, but also for rock mechanics and environmental applications. For Use in Complex Analysis It deals with the modern analysis of shallow foundations, deep foundations, retaining structures, and excavation and tunneling. In recent years, the environment has become more and more important, and so it also deals with municipal and mining waste and solutions for the disposal and containment of the waste. Many fresh solutions to problems are presented to enable more accurate and advanced designs to be carried out. A Practical Reference for Industry Professionals, This Illuminating Book: Offers a broad range of coverage in soil mechanics, rock mechanics, and environmental engineering Incorporates the author's more than 40 years of academic and practical design experience Describes the latest applications that have emerged in the last ten years Supplies references readily available online for futher research Geomechanics in Soil, Rock, and Environmental Engineering should appeal to students in their final undergraduate course in geomechanics or master's students, and should also serve as a useful reference to practitioners in the field of geomechanics, reflecting the author's background in both industry and academia.
This book provides a comprehensive guide to the design of foundations for tall buildings. After a general review of the characteristics of tall buildings, various foundation options are discussed followed by the general principles of foundation design as applied to tall buildings. Considerable attention is paid to the methods of assessment of the geotechnical design parameters, as this is a critical component of the design process. A detailed treatment is then given to foundation design for various conditions, including ultimate stability, serviceability, ground movements, dynamic loadings and seismic loadings. Basement wall design is also addressed. The last part of the book deals with pile load testing and foundation performance measurement, and finally, the description of a number of case histories. A feature of the book is the emphasis it places on the various stages of foundation design: preliminary, detailed and final, and the presentation of a number of relevant methods of design associated with each stage.
Structures cannot be created without engineering theory, and design rules have existed from the earliest times for building Greek temples, Roman aqueducts and Gothic cathedrals -- and later, for steel skyscrapers and the frames for aircraft. This book is, however, not concerned with the description of historical feats, but with the way the structural engineer sets about his business. Galileo, in the seventeenth century, was the first to introduce recognizably modem science into the calculation of structures; he determined the breaking strength of beams. In the eighteenth century engineers moved away from this 'ultimate load' approach, and early in the nineteenth century a formal philosophy of design had been established -- a structure should remain elastic, with a safety factor on stress built into the analysis. This philosophy held sway for over a century, until the first tests on real structures showed that the stresses confidently calculated by designers could not actually be measured in practice. Structural engineering has taken a completely different path since the middle of the twentieth century; plastic analysis reverts to Galileo's objective of the calculation of ultimate strength, and powerful new theorems now underpin the activities of the structural engineer. This book deals with a technical subject, but the presentation is completely non-mathematical. It makes available to the engineer, the architect and the general reader the principles of structural design.
Retrofitting of building structures, including maintenance, rehabilitation, and strengthening, is not only an important issue in urban construction and management, but also a frequent problem to structural engineers in property management disciplines. Based on the contributors' hands-on experience, Retrofitting Design of Building Structures covers structural retrofitting practices, the basic principles of structural analysis and design, and various innovatively-used structural codes for the design, assessment, and retrofitting of building structures using newly-developed technologies worldwide. Beginning with the procedure of structural retrofitting, this book gradually introduces the significance of structural retrofitting; the inspection methods for structural materials, structural deformation, and damages; retrofitting design methods and construction requirements of various structural systems; and practical examples of structural retrofitting design and construction. In the introduction of various examples, it emphasizes not only conceptual design, but also constructional procedure design, so that a structural retrofitting design work should be completed by both structural analysis and detailed constructional measures. The book provides a complete resource for experienced professionals as well as teachers and students.
Reliability-based design (RBD) procedures for engineered structures are being developed and quickly gaining acceptance by cade agencies throughout the world. Numerous organizations are involved in the development of national or regional cades without the benefit of interchange of ideas and methodologies. Harmonization and coordination of these activities is absolutely essential if the ever-increasing international commerce is to flourish. This NATO Advanced Research Workshop (ARW) was organized to bring together, for the first time, experts on RBD and related subjects from various countries to assess the current knowledge and recommend new developments. Further, due to their unique nature and great economic significance in most parts of the world, special emphasis was placed on engineered wood structures. For example, in North America more wood products are used in construction than ali other materials (steel, concrete, brick, etc.) combined. However, the wood industry segment, historically, receives less attention and smaller financial support for new developments than other construction materials. RBD developments are being conducted in Similar, but largely independent, Europe, North America, New Zealand and Australia. Experts from these regions were brought together to exchange information on current work, propose new developments and to provide means of international coordination. Thus, this ARW provided an opportunity to advance the cause of RBD of engineered wood structures.
Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses.
Rockbolting: Principles and Applications brings current theoretical and practical developments in the most widely used support device for underground rock excavations. Today, one cannot find any rock excavation project that does not use rockbolts for rock support. The worldwide annual assumption of rockbolts is in the billions, with pieces applied to mines, tunnels and other types of geotechnical projects for rock and soil reinforcement. The text is based on over 25 years of experience of the author both as academic and practitioner. The book introduces the principles and background concepts of rock support, and then offers a comprehensive overview of the mechanics of rockbolting, as well as current rock bolt types such as mechanical, grouted, self-drilling, grouted cables, frictional and yield rockbolts. Installation and performance assessment are covered next including load-displacement curves and energy-absorption capacities. Two chapters on design and quality control, respectively, cover failure mechanics, the selection process and the connections with other supporting devices. On quality control, the author explains the usual tests and displacement measurements. The final chapter brings current case studies that combine the concepts presented in the whole book. The book is a professional reference for engineers in the mining and geotechnical industries and can be used as research material for academics in rock mechanics and stability studies.
Modeling Steel and Composite Structures explains the computational tools, methods and procedures used to design steel and composite structures. The reference begins with the main models used to determine structural behavior. This is followed by a detailed description of experimental models and their main requirements and care. Numerous simulations presenting non-linear response are illustrated as are their restrictions in terms of boundary conditions, main difficulties, solution strategies and methods adopted to surpass convergence difficulties. In addition, examples of the use of computational intelligence methods to simulate steel and composite structures response are presented.
Solutions for Biot's Poroelastic Theory in Key Engineering Fields: Theory and Applications provides solutions related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains. This book provides the commonly used methods for solving Biot's formulations and conclusions on fully-saturated soil dynamics. It presents various solution methods used in Biot's theory, such as the integral transformation method, the wave potential decomposition method, the finite element, and the 2.5D finite element method. It is suitable for graduate students, researchers and engineers who are interested in the soil-structure interaction problem with Biot's theory, as well as engineers in several subdisciplines.
Forensic Engineering, the latest edition in the Advanced Forensic Science series that grew out of recommendations from the 2009 NAS Report: Strengthening Forensic Science: A Path Forward, serves as a graduate level text for those studying and teaching digital forensic engineering, as well as an excellent reference for a forensic scientist's library or for their use in casework. Coverage includes investigations, transportation investigations, fire investigations, other methods and professional issues. Edited by a world-renowned leading forensic expert, this series is a long overdue solution for the forensic science community.
The fourth edition of this popular steel structures book contains references to both Eurocodes and British Standards. All the material has been updated where necessary, and new and revised worked examples are included. Sections on the meaning, the purpose and limits of structural design, sustainable steel building and energy saving have been updated. The initial chapters cover the essentials of structural engineering and structural steel design. The remainder of the book is dedicated to a detail examination of the analysis and design of selected types of structures, presenting complex designs in an understandable and user-friendly way. These structures include a range of single and multi-storey buildings, floor systems and wide-span buildings. Each design example is illustrated with applications based on current Eurocodes or British Standard design data, thus assisting the reader to share in the environment of the design process that normally takes place in practical offices and develop real design skills. Two new chapters on the design of cased steel columns and plate girders with and without rigid end posts to EC4 & EC3 are included too. References have been fully updated and include useful website addresses. Emphasis is placed on practical design with a view to helping undergraduate students and newly qualified engineers bridge the gap between academic study and work in the design office. Practising engineers who need a refresher course on up-to-dates methods of design and analysis to EC3 and EC4 will also find the book useful, and numerous worked examples are included.
A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement installed at the base of the embankment. A basal reinforced piled embankment can be used for the construction of a road or a railway when a traditional construction method would require too much construction time, affect vulnerable objects nearby or give too much residual settlement, making frequent maintenance necessary. This publication is a guideline (CUR226) for the design of basal reinforced piled embankments. The guideline covers the following subjects: a survey of the requirements and the basic principles for the structure as a whole; some instructions for the pile foundation and the pile caps; design rules for the embankment with the basal geosynthetic reinforcement; extensive calculation examples; finite element calculations; construction details and management and maintenance of the piled embankment. The guideline includes many practical tips. The design guideline is based on state-of-the-art Dutch research, which was conducted in cooperation with many researchers from different countries.
The subject discussed in this book is the stability of thin-walled elastic systems under static loads. The presentation of these problems is based on modern approaches to elastic-stability theory. Special attention is paid to the formulation of elastic-stability criteria, to the statement of column, plate and shell stability problems, to the derivation of basic relationships, and to a discussion of the boundaries of the application of analytic relationships. The author has tried to avoid arcane, nonstandard problems and elaborate and unexpected solutions, which bring real pleasure to connoisseurs, but confuse students and cause bewilderment to some practical engineers. The author has an apprehension that problems which, though interesting, are limited in application can divert the reader's attention from the more prosaic but no less sophisticated general problems of stability theory.
Building Services Design Methodology clearly sets out and defines the building services design process from concept to post-construction phase. By providing a step-by-step methodology for students and practitioners of service engineering, the book will encourage improved efficiency (both in environmental terms and in terms of profit enhancement) through better project management. Generic advice and guidance is set in the current legal and contractual context, ensuring that this will be required reading for professionals. The book's practical style is reinforced by a number of case studies.
Sustainability of Construction Materials, Second Edition, explores an increasingly important aspect of construction. In recent years, serious consideration has been given to environmental and societal issues in the manufacturing, use, disposal, and recycling of construction materials. This book provides comprehensive and detailed analysis of the sustainability issues associated with these materials, mainly in relation to the constituent materials, processing, recycling, and lifecycle environmental impacts. The contents of each chapter reflect the individual aspects of the material that affect sustainability, such as the preservation and repair of timber, the use of cement replacements in concrete, the prevention and control of metal corrosion and the crucial role of adhesives in wood products.
The book deals with the geotechnical analysis and design of foundation systems for high-rise buildings and other complex structures with a distinctive soil-structure interaction. The basics of the analysis of stability and serviceability, necessary soil investigations, important technical regulations and quality and safety assurance are explained and possibilities for optimised foundation systems are given. Additionally, special aspects of foundation systems such as geothermal activated foundation systems and the reuse of existing foundations are described and illustrated by examples from engineering practice.
Characteristics and Uses of Steel Slag in Building Construction focuses predominantly on the utilization of ferrous slag (blast furnace and steel slag) in building construction. This extensive literature review discusses the worldwide utilization of ferrous slag and applications in all sectors of civil engineering, including structural engineering, road construction, and hydro-technical structures. It presents cutting-edge research on the characteristics and properties of ferrous slag, and its overall impact on the environment.
Utilizes both Computer- and Hand-Based Calculations... Modern practice in geomechanics is becoming increasingly reliant on computer-based software, much of which can be obtained through the Internet. In Geomechanics in Soil, Rock, and Environmental Engineering the application of these numerical techniques is examined not only for soil mechanics, but also for rock mechanics and environmental applications. ... For Use in Complex Analysis It deals with the modern analysis of shallow foundations, deep foundations, retaining structures, and excavation and tunneling. In recent years, the environment has become more and more important, and so it also deals with municipal and mining waste and solutions for the disposal and containment of the waste. Many fresh solutions to problems are presented to enable more accurate and advanced designs to be carried out. A Practical Reference for Industry Professionals, This Illuminating Book: Offers a broad range of coverage in soil mechanics, rock mechanics, and environmental engineering Incorporates the author's more than 40 years of academic and practical design experience Describes the latest applications that have emerged in the last ten years Supplies references readily available online for futher research Geomechanics in Soil, Rock, and Environmental Engineering should appeal to students in their final undergraduate course in geomechanics or master's students, and should also serve as a useful reference to practitioners in the field of geomechanics, reflecting the author's background in both industry and academia.
Since the appearance of the first edition of 'Energy Simulation in Building Design', the use of computer-based appraisal tools to solve energy design problems within buildings has grown rapidly. A leading figure in this field, Professor Joseph Clarke has updated his book throughout to reflect these latest developments. The book now includes material on combined thermal/lighting and CFD simulation, advanced glazings, indoor air quality and photovoltaic components. This thorough revision means that the book remains the key text on simulation for architects, building engineering consultants and students of building engineering and environmental design of buildings. The book's purpose is to help architects, mechanical & environmental engineers and energy & facility managers to understand and apply the emerging computer methods for options appraisal at the individual building, estate, city, region and national levels. This is achieved by interspersing theoretical derivations relating to simulation within an evolving description of the built environment as a complex system. The premise is that the effective application of any simulation tool requires a thorough understanding of the domain it addresses.
As existing buildings age, nearly half of all construction activity in Britain is related to maintenance, refurbishment and conversions. Building adaptation is an activity that continues to make a significant contribution to the workload of the construction industry. Given its importance to sustainable construction, the proportion of adaptation works in relation to new build is likely to remain substantial for the foreseeable future, especially in the developed parts of the world. Building Adaptation, Second Edition is intended as a primer on the physical changes that can affect older properties. It demonstrates the general principles, techniques, and processes needed when existing buildings must undergo alteration, conversion, extension, improvement, or refurbishment. The publication of the first edition of Building Adaptation reflected the upsurge in refurbishment work. The book quickly established itself as one of the core texts for building surveying students and others on undergraduate and postgraduate built environment courses. This new edition continues to provide a comprehensive introduction to all the key issues relating to the adaptation of buildings. It deals with any work to a building over and above maintenance to change its capacity, function or performance.
This book introduces the latest construction practices and processes for tall buildings from foundation to roof. It attempts to acquaint readers with the methods, materials, equipment and systems used for the construction of tall buildings.The text progresses through the stages of site investigation, excavation and foundations, basement construction, structural systems for the superstructure, site and material handling, wall and floor construction, cladding and roof construction. The construction sequence, merits and limitations of the various proprietary systems commonly used in these respective stages are discussed. This third edition also includes several new topics not covered in the previous edition.
As modern structures require more critical and complex designs, the need for accurate approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes and operational environments has increased significantly. Reliability assessment techniques help to develop safe designs and identify where significant contributors of uncertainty occur in structural systems, or, where further research, testing and quality control could increase the safety and efficiency of the structure. Reliability-based Structural Design provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. Probability theory, statistic methods, and reliability analysis methods including Monte Carlo Sampling, Latin hypercube sampling, first and second-Order reliability methods, stochastic finite element method, and stochastic optimization are discussed. In addition, the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion, for the reliability analysis of practical engineering problems is also examined. Detailed examples of practical engineering applications including an uninhabited joined-wing aircraft and a supercavitating torpedo are presented to illustrate the effectiveness of these methods. Reliability-based Structural Design will be a valuable reference for graduate and post graduate students studying structural reliability, probabilistic analysis and optimization under uncertainty; as well as engineers, researchers, and technical managers who are concerned with theoreticalfundamentals, computational implementations and applications for probabilistic analysis and design. |
![]() ![]() You may like...
Numerical Engineering Optimization…
Andreas Oechsner, Resam Makvandi
Hardcover
R1,535
Discovery Miles 15 350
Mathematical Proofs: A Transition to…
Gary Chartrand, Albert Polimeni, …
Paperback
R2,477
Discovery Miles 24 770
An Introduction to Modern Mathematical…
Jonathan M. Borwein, Matthew P. Skerritt
Hardcover
R1,683
Discovery Miles 16 830
Advances in Natural Deduction - A…
Luiz Carlos Pereira, edward haeusler, …
Hardcover
R4,295
Discovery Miles 42 950
Research Anthology on Blockchain…
Information Reso Management Association
Hardcover
R10,615
Discovery Miles 106 150
|