![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
The 2016 International Conference on Mechanics and Architectural Design (MAD2016) were held in Suzhou, Jiangsu, China, 14 - 15 May 2016. The main objective of this conference is to provide a platform for researchers, academics and industrial professionals to present their research findings in the fields of Architecture, Mechanical and Civil Engineering.This proceedings consists of 90 articles selected after peer-review. It consists of 6 articles in Mechanics, and 84 articles covering research and development in Civil Engineering; addressing issues in building architecture and structure. Most of these projects were funded by the Chinese research agencies.
Sustainability of Construction Materials, Second Edition, explores an increasingly important aspect of construction. In recent years, serious consideration has been given to environmental and societal issues in the manufacturing, use, disposal, and recycling of construction materials. This book provides comprehensive and detailed analysis of the sustainability issues associated with these materials, mainly in relation to the constituent materials, processing, recycling, and lifecycle environmental impacts. The contents of each chapter reflect the individual aspects of the material that affect sustainability, such as the preservation and repair of timber, the use of cement replacements in concrete, the prevention and control of metal corrosion and the crucial role of adhesives in wood products.
Reinforced Concrete Structures.- Restrained Imposed Deformations versus Loads.- Reinforced Concrete Building Design - The State of the Current Limits.- Review of Coarse Softening Analysis of Framed Concrete Structures.- Moment Redistribution in Reinforced Concrete Structures.- Elastic Rational Analysis and Tests of Unbraced Concrete Frames.- On Shear Failure of R/C Thin-Webbed Beams Limit and Evolutive Analyses: A Close Contest.- Loading on Concrete Structures During Construction.- Comparison of Fixed and Rotating Crack Models in Shear Design of Slender Concrete Beams.- 'Clean' Physical Model of Cracked Reinforced Concrete Plane Element.- Abstract from the Supporting Document of Eurocode 2 on Non Linear Analysis.- Experimental Research of Reinforced Concrete Columns Behaviour under the long-term Eccentric Normal Force.- Modelling Impact Loading of Reinforced Concrete Structures.- Prestressed Concrete Structures.- Tendon Stress in Unbonded Partially Prestressed Concrete Beams.- On the Choice of Prestressing Percentage in PPC Elements.- Stress at Ultimate in Unbonded Prestressing Tendons by Strain Compatibility.- Stresses and End Cracks in Anchorage Zones of Post-Tensioned Prestressed Concrete Beams.- Fatigue Resistance of Post-Tensioned Cables in Partial Prestressing.- Aseismic Prestressed Concrete Structures with Confined Concrete.- Structural Optimization.- Procedural and Declarative Aspects of Optimum Structural Design.- Two Notes on Structural Optimization.- Reliability-Based Structural Optimization Research at the University of Colorado: A Brief Retrospective 1983-1991.- Design Optimization of Civil Engineering Structures: A Retrospective.- Approximations for Structural Optimization.- Optimal Plastic Design of Imperfect Frame Structures.- Nonlinear Material Behaviour.- Consistent Finite Element Models for Elastic Plastic Kirchhoff Plates.- Variational Formulations of the Linear Viscoelastic Problem with General Viscous Kernels.- Application of Strain Energy in the Characterization of Non-Linear Polymeric Materials.- Incremental Elastic-Ziegler Kinematic Hardening Plasticity Formulations and an Algorithm for the Numerical Integration with an 'A Priori' Error Control.- Large Plastic Deformation of Short Tubes and Rings.- Mathematical Expressions of Non-Linear Behaviors in Structural Mechanics.- Structural Engineering.- The Degree of Restraint - A Useful Concept for Practical Stability Analysis (columns, frames, bars on elastic foundations, shells).- Expert Systems in Design of Structures: An Application to Bridges.- Reliability of Flexibly-Connected Steel Frames in Sway.- Safety Level Selection using Social Indicators.- Static Behavior of a Bearing Brick Wall Leaning on Localized Supports: A Case Study Concerning the Consolidation Project of the S. Faustino Convent in Brescia.- The Mesh Description for Structural Analysis by Mathematical Programming.- Partial Reliability Factors for Material Properties.- The Influence of the Basic Parameters on the Load Bearing Behaviour of Cable Stayed Bridges.
This book assembles, identifies and highlights the most recent developments in Rehabilitation and retrofitting of historical and heritage structures. This is an issue of paramount importance in countries with great built cultural heritage that also suffer from high seismicity, such as the countries of the eastern Mediterranean basin. Heritage structures range from traditional residential constructions to monumental structures, ancient temples, towers, castles, etc. It is generally recognized that these structures present particular difficulties in seismic response calculation through computer simulation due to the complexity of the structural system which is, generally, inhomogeneous, with several contact problems, gaps/joints, nonlinearities and brittleness in material constituents. This book contains selected papers from the ECCOMAS Thematic Conferences on Computational Methods in Structural Dynamics & Earthquake Engineering (COMPDYN) that were held in Corfu, Greece in 2011 and Kos, Greece in 2013. The Conferences brought together the scientific communities of Computational Mechanics, Structural Dynamics and Earthquake Engineering in an effort to facilitate the exchange of ideas in topics of mutual interest and to serve as a platform for establishing links between research groups with complementary activities.
Building Services Design Methodology clearly sets out and defines the building services design process from concept to post-construction phase. By providing a step-by-step methodology for students and practitioners of service engineering, the book will encourage improved efficiency (both in environmental terms and in terms of profit enhancement) through better project management. Generic advice and guidance is set in the current legal and contractual context, ensuring that this will be required reading for professionals. The book's practical style is reinforced by a number of case studies.
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
The fifteen chapters of this book are arranged in a logical progression. The text begins with the more fundamental material on stress and strain transformations with elasticity theory for plane and axially symmetric bodies, followed by a full treatment of the theories of bending and torsion. Coverage of moment distribution, shear flow, struts and energy methods precede a chapter on finite elements. Thereafter, the book presents yield and strength criteria, plasticity, collapse, creep, visco-elasticity, fatigue and fracture mechanics. Appended is material on the properties of areas, matrices and stress concentrations. Each topic is illustrated by worked examples and supported by numerous exercises drawn from the author's teaching experience and professional institution examinations (CEI). This edition includes new material and an extended exercise section for each of the fifteen chapters, as well as three appendices. The broad text ensures its suitability for undergraduate and postgraduate courses in which the mechanics of solids and structures form a part including: mechanical, aeronautical, civil, design and materials engineering.
The book deals with the geotechnical analysis and design of foundation systems for high-rise buildings and other complex structures with a distinctive soil-structure interaction. The basics of the analysis of stability and serviceability, necessary soil investigations, important technical regulations and quality and safety assurance are explained and possibilities for optimised foundation systems are given. Additionally, special aspects of foundation systems such as geothermal activated foundation systems and the reuse of existing foundations are described and illustrated by examples from engineering practice.
Since the appearance of the first edition of 'Energy Simulation in Building Design', the use of computer-based appraisal tools to solve energy design problems within buildings has grown rapidly. A leading figure in this field, Professor Joseph Clarke has updated his book throughout to reflect these latest developments. The book now includes material on combined thermal/lighting and CFD simulation, advanced glazings, indoor air quality and photovoltaic components. This thorough revision means that the book remains the key text on simulation for architects, building engineering consultants and students of building engineering and environmental design of buildings. The book's purpose is to help architects, mechanical & environmental engineers and energy & facility managers to understand and apply the emerging computer methods for options appraisal at the individual building, estate, city, region and national levels. This is achieved by interspersing theoretical derivations relating to simulation within an evolving description of the built environment as a complex system. The premise is that the effective application of any simulation tool requires a thorough understanding of the domain it addresses.
This proceedings brings together one hundred and ten selected papers presented at the 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2015), which was held in Changsha, China, during October 15-18, 2015.To satisfy the increasingly urgent requirement of reducing the weight of vehicle structures and increasing passenger safety, ICHSU2015 provided an excellent international platform for researchers to share their knowledge and results in theory, methodology and applications of advanced high strength steel and press hardening technology.This conference aroused great interests and attentions from domestic and foreign researchers in hot stamping field. Experts in this field from Australia, China, Germany and Sweden, contributed to the collection of research results and developments. The papers cover almost all the current topics of advanced high strength steel and press hardening technology.
Utilizes both Computer- and Hand-Based Calculations... Modern practice in geomechanics is becoming increasingly reliant on computer-based software, much of which can be obtained through the Internet. In Geomechanics in Soil, Rock, and Environmental Engineering the application of these numerical techniques is examined not only for soil mechanics, but also for rock mechanics and environmental applications. ... For Use in Complex Analysis It deals with the modern analysis of shallow foundations, deep foundations, retaining structures, and excavation and tunneling. In recent years, the environment has become more and more important, and so it also deals with municipal and mining waste and solutions for the disposal and containment of the waste. Many fresh solutions to problems are presented to enable more accurate and advanced designs to be carried out. A Practical Reference for Industry Professionals, This Illuminating Book: Offers a broad range of coverage in soil mechanics, rock mechanics, and environmental engineering Incorporates the author's more than 40 years of academic and practical design experience Describes the latest applications that have emerged in the last ten years Supplies references readily available online for futher research Geomechanics in Soil, Rock, and Environmental Engineering should appeal to students in their final undergraduate course in geomechanics or master's students, and should also serve as a useful reference to practitioners in the field of geomechanics, reflecting the author's background in both industry and academia.
- Presents a new geometric method of structural analysis - Offers new, geometric and visually engaging Muller-Breslau Method tools - An essential resource for architecture and engineering students and instructors that is novel and geometric - Includes over 300 black and white illustrations - Includes open-ended, three dimensional student exercises throughout
As modern structures require more critical and complex designs, the need for accurate approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes and operational environments has increased significantly. Reliability assessment techniques help to develop safe designs and identify where significant contributors of uncertainty occur in structural systems, or, where further research, testing and quality control could increase the safety and efficiency of the structure. Reliability-based Structural Design provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. Probability theory, statistic methods, and reliability analysis methods including Monte Carlo Sampling, Latin hypercube sampling, first and second-Order reliability methods, stochastic finite element method, and stochastic optimization are discussed. In addition, the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion, for the reliability analysis of practical engineering problems is also examined. Detailed examples of practical engineering applications including an uninhabited joined-wing aircraft and a supercavitating torpedo are presented to illustrate the effectiveness of these methods. Reliability-based Structural Design will be a valuable reference for graduate and post graduate students studying structural reliability, probabilistic analysis and optimization under uncertainty; as well as engineers, researchers, and technical managers who are concerned with theoreticalfundamentals, computational implementations and applications for probabilistic analysis and design.
This contributed volume encompasses contributions by eminent researchers in the field of geotechnical engineering. The chapters of this book are based on the keynote and sub-theme lectures delivered at the Indian Geotechnical Conference 2017. The book provides a comprehensive overview of the current state-of-the-art research and practices in different domains of geotechnical engineering in the areas of soil dynamics, earth retaining structures, ground improvement, and geotechnical and geophysical investigations. It will serve as an ideal resource for academics, researchers, practicing professionals, and students alike.
Mechanics of Functionally Graded Material Structures is an authoritative and fresh look at various functionally graded materials, customizing them with various structures. The book is devoted to tailoring material properties to the needed structural performance. The authors pair materials with the appropriate structures based upon their purpose and use.Material grading of structures depending upon thickness, axial and polar directions are discussed. Three dimensional analysis of rectangular plates made of functional graded materials and vibrational tailoring of inhomogeneous beams and circular plates are both covered in great detail. The authors derive novel closed form solutions that can serve as benchmarks that numerical solutions can be compared to. These are published for the first time in the literature. This is a unique book that gives the first exposition of the effects of various grading mechanisms on the structural behavior as well as taking into account vibrations and buckling.
This volume elucidates the design rules for connections in steel and composite structures which are set out in Eurocode3 and 4. Numerous examples illustrate the application of the respective design rule.
A Powerful Tool for the Analysis and Design of Complex Structural Elements Finite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions presents a finite-element model of structural concrete under short-term loading, covering the whole range of short-term loading conditions, from static (monotonic and cyclic) to dynamic (seismic and impact) cases. Experimental data on the behavior of concrete at both the material and structural levels reveal the unavoidable development of triaxial stress conditions prior to failure which dictate the collapse and ductility of structural concrete members. Moreover, and in contrast with generally accepted tenets, it can be shown that the post-peak behavior of concrete as a material is realistically described by a complete and immediate loss of load-carrying capacity. Hence rational analysis and design of concrete components in accordance with the currently prevailing limit-state philosophy requires the use of triaxial material data consistent with the notion of a fully brittle material, and this approach is implemented in the book by outlining a finite-element method for the prediction of the strength, deformation, and cracking patterns of arbitrary structural concrete forms. Presents a Unified Approach to Structural Modeling Numerous examples are given that show both the unifying generality of this proposed approach and the reliability of the ensuing numerical procedure for which the sole input is the specified uniaxial cylinder compressive strength of concrete and the yield stress of the steel. This not only offers a better understanding of the phenomenology of structural concrete behavior but also illustrates, by means of suitable examples, the type of revision required for improving design methods in terms of both safety and economy. This book: Highlights the significance of valid experimental information on the behavior of concrete under triaxial stress conditions for interpreting structural behavior Describes the techniques used for obtaining valid test data and modeling concrete behavior Discusses the modeling of steel properties as well as the interaction between concrete and steel Presents numerical techniques for incorporating the material models into nonlinear finite-element analysis for the case of short-term static loading Provides numerical techniques adopted for extending the use of the numerical analysis scheme for the solution of dynamic problems Predicts the response of a wide range of structural-concrete configurations to seismic and impact excitations Using relevant case studies throughout, Finite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions focuses on the realistic modeling of structural concrete on the basis of existing and reliable material data and aids in the research and study of structural concrete and concrete materials.
This established and popular textbook has now been extensively rewritten and expanded in line with the current Eurocodes. It presents the principles of the design of concrete elements and also the design of complete structures, and provides practical illustrations of the theory. It explains the background to the Eurocode rules and goes beyond the core topics to cover the design of foundations, retaining walls, water retaining structures.
An ideal resource for civil engineers working with offshore structures, pipelines, dredging, and coastal erosion, Seafloor Processes and Geotechnology bridges the gap between the standard soil mechanics curriculum of civil engineering and published material on marine geotechnology. Utilizing organized information on sediments and foundations for marine applications from a variety of sources, it provides practical reference information and approaches for analysis and design. This book provides an understanding of the processes and loadings affecting the sediment/water interface and the sediment column on the continental shelf and slope as well as the abyssal plains. It outlines the geological and geotechnical factors that should be considered in an investigation, and provides practicing professionals with the information they need to analyze potential environmental hazards and problems in marine foundations and slope stability. It covers geology, site investigation, drilling and sampling sediments, material properties, foundation design, slope stability, and more. Exploring marine geotechnology from a historical perspective, this book: Describes the development of marine geotechnology, the marine environment, and the geology of the seabed Discusses the various elements of a site investigation Explains how to investigate a site by remote sensing over the macro scale, probing to look at a more defined area, and drilling and sampling at the micro scale Looks at the physical, acoustic, and geochemical properties of marine sediments at the micro scale Focuses on slope stability and marine foundations Seafloor Processes and Geotechnology provides the background for in situ investigation, drilling, soil sampling, and laboratory testing technologies and serves as a complete handbook for engineers, geologists, as well as marine and environmental scientists.
As existing buildings age, nearly half of all construction activity in Britain is related to maintenance, refurbishment and conversions. Building adaptation is an activity that continues to make a significant contribution to the workload of the construction industry. Given its importance to sustainable construction, the proportion of adaptation works in relation to new build is likely to remain substantial for the foreseeable future, especially in the developed parts of the world. Building Adaptation, Second Edition is intended as a primer on the physical changes that can affect older properties. It demonstrates the general principles, techniques, and processes needed when existing buildings must undergo alteration, conversion, extension, improvement, or refurbishment. The publication of the first edition of Building Adaptation reflected the upsurge in refurbishment work. The book quickly established itself as one of the core texts for building surveying students and others on undergraduate and postgraduate built environment courses. This new edition continues to provide a comprehensive introduction to all the key issues relating to the adaptation of buildings. It deals with any work to a building over and above maintenance to change its capacity, function or performance.
A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement installed at the base of the embankment. A basal reinforced piled embankment can be used for the construction of a road or a railway when a traditional construction method would require too much construction time, affect vulnerable objects nearby or give too much residual settlement, making frequent maintenance necessary. This publication is a guideline (CUR226) for the design of basal reinforced piled embankments. The guideline covers the following subjects: a survey of the requirements and the basic principles for the structure as a whole; some instructions for the pile foundation and the pile caps; design rules for the embankment with the basal geosynthetic reinforcement; extensive calculation examples; finite element calculations; construction details and management and maintenance of the piled embankment. The guideline includes many practical tips. The design guideline is based on state-of-the-art Dutch research, which was conducted in cooperation with many researchers from different countries.
Establishes Geotechnical Reliability as Fundamentally Distinct from Structural Reliability Reliability-based design is relatively well established in structural design. Its use is less mature in geotechnical design, but there is a steady progression towards reliability-based design as seen in the inclusion of a new Annex D on "Reliability of Geotechnical Structures" in the third edition of ISO 2394. Reliability-based design can be viewed as a simplified form of risk-based design where different consequences of failure are implicitly covered by the adoption of different target reliability indices. Explicit risk management methodologies are required for large geotechnical systems where soil and loading conditions are too varied to be conveniently slotted into a few reliability classes (typically three) and an associated simple discrete tier of target reliability indices. Provides Realistic Practical Guidance Risk and Reliability in Geotechnical Engineering makes these reliability and risk methodologies more accessible to practitioners and researchers by presenting soil statistics which are necessary inputs, by explaining how calculations can be carried out using simple tools, and by presenting illustrative or actual examples showcasing the benefits and limitations of these methodologies.With contributions from a broad international group of authors, this text: Presents probabilistic models suited for soil parameters Provides easy-to-use Excel-based methods for reliability analysis Connects reliability analysis to design codes (including LRFD and Eurocode 7) Maximizes value of information using Bayesian updating Contains efficient reliability analysis methods Accessible To a Wide Audience Risk and Reliability in Geotechnical Engineering presents all the "need-to-know" information for a non-specialist to calculate and interpret the reliability index and risk of geotechnical structures in a realistic and robust way. It suits engineers, researchers, and students who are interested in the practical outcomes of reliability and risk analyses without going into the intricacies of the underlying mathematical theories.
Spatial cognition is a broad field of enquiry, emerging from a wide range of disciplines and incorporating a wide variety of paradigms that have been employed with human and animal subjects. This volume is part of a two- volume handbook reviewing the major paradigms used in each of the contributors' research areas.; This volume considers the issues of neurophysiological aspects of spatial cognition, the assessment of cognitive spatial deficits arising from neural damage in humans and animals, and the observation of spatial behaviours in animals in their natural habitats.; This handbook should be of interest to new and old students alike. The student new to spatial research can be brought up-to- speed with a particular range of techniques, made aware of the background and pitfalls of particular approaches, and directed toward useful sources. For seasoned researchers, the handbook provides a rapid scan of the available tools that they might wish to consider as alternatives when wishing to answer a particular "spatial" research problem.
The First Conference on Engineering Probability in Flood Defense was orga nized by the Department of Mathematics and Informatics of the Delft U niver sity of Technology and the Department of Industrial Engineering and Opera tions Research of the University of California at Berkeley, and was held on June 1,2 1995 in Delft. Groups at Berkeley and Delft were both deeply engaged in modeling deterioration in civil structures, particularly flood defense structures. The plans for the conference were well under way when the dramatic floods in The Netherlands and California in the winter of 1994-1995 focused world attention on these problems. The design of civil engineering structures and systems is essentially an example of decision making under uncertainty. Although the decision making part of the process is generally acknowledged, the uncertainty in variables and param eters in the design problem is less frequently recognized. In many practical design procedures the uncertainty is concealed behind sharp probabilistic de sign targets like 'once in a thousand years' combined with a standardized use of safety factors. The choice of these probabilistic design targets, however, is based on an assessment of the uncertainty of the variable under consideration, and on its assessed importance. The value of the safety factor is governed by similar considerations. Standard practice is simply accu ulated experience and engineering judgment. In light of the great number of civil engineering structures that function suc-. cessfully, one may say that this standard practice has proven itself broadly satisfactory."
Steel frames are used in many commercial high-rise buildings, as well as industrial structures, such as ore mines and oilrigs. Enabling construction of ever lighter and safer structures, steel frames have become an important topic for engineers. This book, split into two parts covering advanced analysis and advanced design of steel frames, guides the reader from a broad array of frame elements through to advanced design methods such as deterministic, reliability, and system reliability design approaches. This book connects reliability evaluation of structural systems to advanced analysis of steel frames, and ensures that the steel frame design described is founded on system reliability. Important features of the this book include: fundamental equations governing the elastic and elasto-plastic equilibrium of beam, sheer-beam, column, joint-panel, and brace elements for steel frames; analysis of elastic buckling, elasto-plastic capacity and earthquake-excited behaviour of steel frames; background knowledge of more precise analysis and safer design of steel frames against gravity and wind, as well as key discussions on seismic analysis. theoretical treatments, followed by numerous examples and applications; a review of the evolution of structural design approaches, and reliability-based advanced analysis, followed by the methods and procedures for how to establish practical design formula. Advanced Design and Analysis of Steel Frames provides students, researchers, and engineers with an integrated examination of this core civil and structural engineering topic. The logical treatment of both advanced analysis followed by advanced design makes this an invaluable reference tool, comprising of reviews, methods, procedures, examples, and applications of steel frames in one complete volume. |
You may like...
Going Public - The Theory and Evidence…
Tim Jenkinson, Alexander Ljungqvist
Hardcover
R4,107
Discovery Miles 41 070
Township Economy - People, Spaces And…
Andrew Charman, Leif Petersen, …
Paperback
(1)
Learn Italian with Alice in Wonderland…
Lewis Caroll, Weeve Languages
Paperback
R454
Discovery Miles 4 540
EU Industrial Policy in the Multipolar…
Jean-Christophe Defraigne, Jan Wouters, …
Hardcover
R4,612
Discovery Miles 46 120
|