![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
A comprehensive introduction to strain-based structural health monitoring of civil structures, with focus on measurement and data analysis Introduction to Strain-Based Structural Health Monitoring of Civil Structures focuses on the SHM of Civil Structures and Infrastructure, and develops the relevant topics of measurement and data analysis from a fundamental to advanced level. The book contains an overview of the available and emerging monitoring technologies, for example, traditional strain-gauges, fiber optic sensors, and large area electronics. The fundamental criteria for applications of SHM technologies on concrete, steel and composite materials are also discussed, and both basic and advanced data interpretation and analysis for static and dynamic monitoring are presented in detail. Methods applicable to a large spectrum of civil structures such as bridges, buildings, and geo-structures are summarized. These methods are illustrated with practical examples. Key features: * Introduces strain-based structural health monitoring of civil structures, with focus on measurement and data analysis. * Contains the basic strain-based SHM methods for monitoring various types of structures. * Covers the physical principles, advantages and limitations of various types of sensors. * Covers the sources of static and dynamic strain, and how to interpret the strain measurement. * Includes basic and advanced methods for static and dynamic data analysis. * Explores the potential and benefits as well as the limitations of SHM. * Suitable as a guide for practicing engineers, reference for infrastructure owners, and textbook for researchers and SHM university courses. Introduction to Strain-Based Structural Health Monitoring of Civil Structures is essential, state-of-the-art reading for civil and structural engineers and professionals in SHM, as well as teachers, researchers and students in civil engineering.
This book covers the topic of degradation phenomenon of natural fiber-based composites (NFC) under various aging conditions and proposes suitable solutions to improve the response of natural fiber-reinforced composite to aging conditions such as moisture, seawater, hygrothermal, and natural and accelerated weathering. The information provided by the book plays a vital role in the durability and shelf life of the composites as well as broadening the scope of outdoor application for natural fiber-based composites. The book will be appropriate for researchers and scientist who are interested in the application of natural fiber composites in various fields.
This book is related to a parametric study of the soil-structural interface shearing behavior based on the numerical simulations of interface shear test with DEM, which is conducted from the role of soil properties, particle properties and structural properties. To aid readers in easily understanding the generation, implementation of models and controlling modes, for each part, the relevant code is provided in the text, and the whole source code of model is given in Appendix to share with readers for practice. The book is intended for graduate-level teaching and research in soil mechanics and geotechnical engineering, as well as in other related engineering specialties. This book is also of use to industry practitioners due to the inclusion of real-world applications, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.
This comprehensive textbook focuses on the torsion in thin walled structures, highlights the nuances of the problems faced and succinctly discusses warping, bimoment, etc. Since in several thin walled structures, torsion is the only or dominant loading, this book addresses such unique structures as well. It provides a concise explanation of the warping properties and how they are evaluated. Thin walled structures with torsion as the preponderant loading are then treated using classical and finite element methods. No prior knowledge of the finite element method is required as the method is introduced from the basics. The same problem is worked out by both approaches so that the concepts are clearly understood by the readers. The book includes pedagogical features such as end-of-chapter questions and worked out examples to augment learning and self-testing. The book will be useful for graduate courses as well as for professional development coursework for structural engineers in the aerospace, mechanical, and civil engineering domains.
Geotechnical investigation, which is usually implemented to obtain baseline information of ground and groundwater, is the focus of this book. Authored by practitioner and academic who is extensively involved in geotechnical ground investigations over four continents, this book covers both large scale preliminary ground investigation and intrusive detailed investigation, as well as specialized in-situ testing to obtain advanced geotechnical parameters of soils. Both surface and borehole geophysical methods used in geotechnical investigation, including methods of sampling and tools to obtain good quality soil samples are also discussed and presented in the book.Written for advanced undergraduate and graduate students, researchers and practitioners in the fields of geotechnical engineering, geoenvironmental engineering, and ground investigation, the book also provides guidelines on presenting factual geotechnical data and preparing factual reports.Related Link(s)
This book covers state-of-the-art technologies, principles, methods and industrial applications of electronic waste (e-waste) and waste PCB (WPCB) recycling. It focuses on cutting-edge mechanical separation processes and pyro- and hydro-metallurgical treatment methods. De-soldering, selective dismantling, and dry separation methods (including the use of gravity, magnetic and electrostatic techniques) are discussed in detail, noting the patents related to each. The volume discusses the available industrial equipment and plant flowsheets used for WPCB recycling in detail, while addressing potential future directions of the field. This practical, comprehensive, and multidisciplinary reference will appeal to professionals throughout global industrial, academic and government institutions interested in addressing the growing problem of e-waste. Covers principles, methods and industrial applications of e-waste and PCB recycling; Details state-of-the-art mechanical separation processes and pyro- and hydro-metallurgical treatment methods; Describes the available industrial equipment used and plant flowsheets for PCB recycling and addresses potential future developments of this important field.
The effect of combined extreme transient loadings on a structure is not well understood-whether the source is man-made, such as an explosion and fire, or natural, such as an earthquake or extreme wind loading. A critical assessment of current knowledge is timely (with Fukushima-like disasters or terrorist threats). The central issue in all these problems is structural integrity, along with their transient nature, their unexpectedness, and often the uncertainty behind their cause. No single traditional scientific discipline provides complete answers, rather, a number of tools need to be brought together: nonlinear dynamics, probability theory, some understanding of the physical nature of the problem, as well as modeling and computational techniques for representing inelastic behavior mechanisms. Nonlinear Dynamics of Structures Under Extreme Transient Loads covers model building for different engineering structures and provides detailed presentations of extreme loading conditions. A number of illustrations are given quantifying; a plane crash or explosion induced impact loading, the effects of strong earthquake motion, and the impact and long-duration effects of strong stormy winds-along with a relevant framework for using modern computational tools. The book considers the levels of reserve in existing structures, and ways of reducing the negative impact of high-risk situations by employing sounder design procedures.
Master the core concepts and applications of foundation analysis and design with Das’ best-selling PRINCIPLES OF FOUNDATION ENGINEERING, SI, 10th Edition. A must-have resource in your engineering education, this edition is specifically written for undergraduate civil engineering students like you to provide an ideal balance between today's most current research and practical field applications. Dr. Das, a renowned author in the field of geotechnical engineering, emphasizes how to develop the critical judgment you need to properly apply theories and analysis to the evaluation of soils and foundation design. A new chapter discusses the uplift capacity of shallow foundations and helical anchors. This edition provides more worked-out examples and figures than any other book of its kind, along with new learning objectives and illustrative photos that help you focus on the skills most critical for success as a civil engineer. WebAssign's digital resources are also available for review and reinforcement.
Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes, Second Edition is the definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. The book integrates the development of fundamental theories, formulas, and mathematical models with user-friendly interactive computer programs that are written in MATLAB. This unique merger of technical reference and interactive computing provides instant solutions to a variety of engineering problems, and in-depth exploration of the physics of deformation, stress and motion by analysis, simulation, graphics, and animation.
This book deals with the dynamical modeling of thin elastic structures, such as beams, plates and shells - particularly, the linear and nonlinear vibrations in these structures. The approach makes systematic use of variational equations of motion.
This book contains full papers presented at the First Virtual Conference on Mechanical Fatigue (VCMF 2020), which was organised by the University of Porto (FEUP, Portugal), the Wroclaw University of Science and Technology (Poland), University of Electronic Science and Technology of China (China), Siberian Federal University (Russia), and the ESIS/TC12 Technical Committee (European Structural Integrity Society-ESIS), between 9 and 11 of September 2020. This conference was intended to be a forum of discussion of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of mechanical fatigue and fracture. The first edition of the VCMF 2020 event has reached more than 60 participants from more than 20 nationalities demonstrating the vitality of this new event.
Provides comprehensive coverage of theory and hands-on implementation of computer vision-based sensors for structural health monitoring This book is the first to fill the gap between scientific research of computer vision and its practical applications for structural health monitoring (SHM). It provides a complete, state-of-the-art review of the collective experience that the SHM community has gained in recent years. It also extensively explores the potentials of the vision sensor as a fast and cost-effective tool for solving SHM problems based on both time and frequency domain analytics, broadening the application of emerging computer vision sensor technology in not only scientific research but also engineering practice. Computer Vision for Structural Dynamics and Health Monitoring presents fundamental knowledge, important issues, and practical techniques critical to successful development of vision-based sensors in detail, including robustness of template matching techniques for tracking targets; coordinate conversion methods for determining calibration factors to convert image pixel displacements to physical displacements; sensing by tracking artificial targets vs. natural targets; measurements in real time vs. by post-processing; and field measurement error sources and mitigation methods. The book also features a wide range of tests conducted in both controlled laboratory and complex field environments in order to evaluate the sensor accuracy and demonstrate the unique features and merits of computer vision-based structural displacement measurement. Offers comprehensive understanding of the principles and applications of computer vision for structural dynamics and health monitoring Helps broaden the application of the emerging computer vision sensor technology from scientific research to engineering practice such as field condition assessment of civil engineering structures and infrastructure systems Includes a wide range of laboratory and field testing examples, as well as practical techniques for field application Provides MATLAB code for most of the issues discussed including that of image processing, structural dynamics, and SHM applications Computer Vision for Structural Dynamics and Health Monitoring is ideal for graduate students, researchers, and practicing engineers who are interested in learning about this emerging sensor technology and advancing their applications in SHM and other engineering problems. It will also benefit those in civil and aerospace engineering, energy, and computer science.
Plates and panels are primary components in many structures including space vehicles, aircraft, automobiles, buildings, bridge decks, ships and submarines. The ability to design, analyse, optimise and select the proper materials for these structures is a necessity for structural designers, analysts and researchers. This text consists of four parts. The first deals with plates of isotropic (metallic and polymeric) materials. The second involves composite material plates, including anisotropy and laminate considerations. The third section treats sandwich constructions of various types, and the final section gives an introduction to plates involving piezoelectric materials, in which the "smart" or "intelligent" materials are used as actuators or sensors. In each section, the formulations encompass plate structures subjected to static loads, dynamic loads, buckling, thermal/moisture environments, and minimum weight structural optimisation. This is a textbook for a graduate course, an undergraduate senior course and a reference. Many homework problems are given in various chapters.
Structural health monitoring (SHM) has emerged as a prominent research area in recent years owing to increasing concerns about structural safety, and the need to monitor and extend the lives of existing structures. Structural Health Monitoring Using Genetic Fuzzy Systems elaborates the process of intelligent SHM development and implementation using the evolutionary system. The use of a genetic algorithm automates the development of the fuzzy system, and makes the method easy to use for problems involving a large number of measurements, damage locations and sizes; such problems being typical of SHM. The ideas behind fuzzy logic, genetic algorithms and genetic fuzzy systems are also explained. The functionality of the genetic fuzzy system architecture is elucidated within a case-study framework, covering: * SHM of beams; * SHM of composite tubes; and * SHM of helicopter rotor blades. Structural Health Monitoring Using Genetic Fuzzy Systems will be useful for aerospace, civil and mechanical engineers working with structures and structured components. It will also be useful for computer scientists and applied mathematicians interested in the application of genetic fuzzy systems to engineering problems.
This book introduces the fundamental design concepts of Eurocode 3 for steel structures in building construction, and their practical application. Following a discussion of the basis of design, above all the principles of the limit state approach, the material standards and their use are detailed. The fundamentals of structural analysis and modeling are presented, followed by the design criteria and approaches for various types of structural members. The following chapters expand on the principles and applications of elastic and plastic design, each exemplified by the step-by-step design calculation of a braced steel-framed building and an industrial building, respectively. Besides providing the necessary theoretical concepts for a good understanding, this manual intends to be a supporting tool for practicing engineers. To that end, numerous worked examples are provided throughout the book, concerning the analysis of steel structures and the design of elements under several types of actions. These examples facilitate the application of Eurocode regulations in practice. The second edition contains more worked examples and extended explications on issues like torsion.
Stability of Discrete Non-conservative Systems first exposes the general concepts and results concerning stability issues. It then presents an approach of stability that is different from Lyapunov which leads to the second order work criterion. Thanks to the new concept of Kinematic Structural Stability, a complete equivalence between two approaches of stability is obtained for a divergent type of stability. Extensions to flutter instability, to continuous systems, and to the dual questions concerning the measure of non-conservativeness provides a full, fresh look at these fundamental questions. A special chapter is devoted to applications for granular systems.
So far in the twenty-first century, there have been many developments in our understanding of materials behaviour and in their technology and use. This new edition has been expanded to cover recent developments such as the use of glass as a structural material. It also now examines the contribution that material selection makes to sustainable construction practice, considering the availability of raw materials, production, recycling and reuse, which all contribute to the life cycle assessment of structures. As well as being brought up-to-date with current usage and performance standards, each section now also contains an extra chapter on recycling. Covers the following materials:
This new edition maintains our familiar and accessible format, starting with fundamental principles and continuing with a section on each of the major groups of materials. It gives you a clear and comprehensive perspective on the whole range of materials used in modern construction. A must have for Civil and Structural engineering students, and for students of architecture, surveying or construction on courses which require an understanding of materials."
This text presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. This text should be of interest to researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. It provides a reference for advanced undergraduate or graduate courses on structural optimization and optimum design.
Knowledge surrounding the behavior of earth materials is important to a number of industries, including the mining and construction industries. Further research into the field of geotechnical engineering can assist in providing the tools necessary to analyze the condition and properties of the earth. Technology and Practice in Geotechnical Engineering brings together theory and practical application, thus offering a unified and thorough understanding of soil mechanics. Highlighting illustrative examples, technological applications, and theoretical and foundational concepts, this book is a crucial reference source for students, practitioners, contractors, architects, and builders interested in the functions and mechanics of sedimentary materials.
Describes the basics of aircraft flight simulation and control. Features a new chapter on the dynamics and control principles of drones and UAVs. Includes new sections, chapter problems, examples, and simulator exercises. Includes case studies of control laws. Discusses modeling and simulation for determining the aircraft’s response to typical control inputs with MATLAB®/Simulink® examples.
This book presents select papers from the International Conference on Smart Materials and Techniques for Sustainable Development (SMTS) 2019. The contents focus on a wide range of methods and techniques related to sustainable development fields like smart structures and materials, innovation in water resource development, optical fiber communication, green construction materials, optimization and innovation in structural design, structural dynamics and earthquake engineering, structural health monitoring, nanomaterials, nanotechnology and sensors, smart biomaterials and medical devices, materials for energy conversion and storage devices, and IoT in sustainable development. This book aims to provide up-to-date and authoritative knowledge from both industrial and academic worlds, sharing best practice in the field of smart materials analysis. The contents of this book will be beneficial to students, researchers, and professionals working in the field of smart materials and sustainable development.
Structural Analysis of Historic Buildings offers the most’ complete, detailed, and authentic data available on the materials, calculation methods, and design techniques used by architects and engineers of the nineteenth and early twentieth centuries. It provides today’s building professionals with information needed to analyze, modify, and certify historic buildings for modern use. Among the many important features of this book not available in any other single volume are:
"During the last two decades, research on structural optimization became increasingly concerned with two aspects: the application of general numeri- cal methods of optimization to structural design of complex real structures, and the analytical derivation of necessary and sufficient conditions for the optimality of broad classes of comparatively simple and more or less ideal- ized structures. Both kinds of research are important: the first for obvious reasons; the second, because it furnishes information that is useful in testing the validity, accuracy and convergence of numerical methods and in assess- ing the efficiency of practical designs. " (Prager and Rozvany, 1977a) The unexpected death of William Prager in March 1980 marked, in a sense, the end of an era in structural mechanics, but his legacy of ideas will re- main a source of inspiration for generations of researchers to come. Since his nominal retirement in the early seventies, Professor and Mrs. Prager lived in Savognin, an isolated alpine village and ski resort surrounded by some of Switzerland's highest mountains. It was there that the author's close as- sociation with Prager developed through annual pilgrimages from Australia and lengthy discussions which pivoted on Prager's favourite topic of struc- tural optimization. These exchanges took place in the picturesque setting of Graubunden, on the terrace of an alpine restaurant overlooking snow-capped peaks, on ski-lifts or mountain walks, or during evening meals in the cosy hotels of Savognin, Parsonz and Riom.
Tunnel Boring Machine (TBM) constructed tunnels are widespread, and can deliver significant environmental and cost benefits. However, as noted in the noteworthy examples of TBM traffic tunnels presented in this book, there are still important challenges associated with them, linked in particular to structural safety in the event of earthquakes, as well as cost and safety issues during operation. To face these challenges, Innovation in TBM Traffic Tunnels presents three innovative concepts in the field of construction of TBM rail and road tunnels: the TISB concept that improves the structural safety of those built on soft soil in seismic areas, and the TMG and TMF concepts, for rail and road tunnels, respectively, that allow for significant reduction of their cost and the improvement of safety during operation. Examples of the application of these new concepts in the conceptual design of specific tunnel cases are presented and compared with solutions based on common approaches, demonstrating the additional benefits of these concepts. The book also draws attention to other innovations in TBM tunnelling that may improve the construction of tunnels in the future, especially when using the concepts mentioned above. Innovation in TBM Traffic Tunnels is aimed at professionals involved in the planning, design, and construction of tunnels for transport infrastructure, including authorities, consultants and construction companies, worldwide.
This textbook describes the rules for the design of steel and composite building structures according to Eurocodes, covering the structure as a whole, as well as the design of individual structural components and connections. It addresses the following topics: the basis of design in the Eurocodes framework; the loads applied to building structures; the load combinations for the various limit states of design and the main steel properties and steel fabrication methods; the models and methods of structural analysis in combination with the structural imperfections and the cross-section classification according to compactness; the cross-section resistances when subjected to axial and shear forces, bending or torsional moments and to combinations of the above; component design and more specifically the design of components sensitive to instability phenomena, such as flexural, torsional and lateral-torsional buckling (a section is devoted to composite beams); the design of connections and joints executed by bolting or welding, including beam to column connections in frame structures; and alternative configurations to be considered during the conceptual design phase for various types of single or multi-storey buildings, and the design of crane supporting beams. In addition, the fabrication and erection procedures, as well as the related quality requirements and the quality control methods are extensively discussed (including the procedures for bolting, welding and surface protection). The book is supplemented by more than fifty numerical examples that explain in detail the appropriate procedures to deal with each particular problem in the design of steel structures in accordance with Eurocodes. The book is an ideal learning resource for students of structural engineering, as well as a valuable reference for practicing engineers who perform designs on basis of Eurocodes. |
![]() ![]() You may like...
Incorporating the Internet of Things in…
P.B. Pankajavalli, G.S. Karthick
Hardcover
R8,878
Discovery Miles 88 780
Heliophysics: Plasma Physics of the…
Carolus J. Schrijver, George L Siscoe
Hardcover
R2,597
Discovery Miles 25 970
Fractal Geometry and Stochastics VI
Uta Freiberg, Ben Hambly, …
Hardcover
R4,681
Discovery Miles 46 810
Stochastic Resonance - Theory and…
Bruno Ando, Salvatore Graziani
Hardcover
R4,715
Discovery Miles 47 150
Crowdsourced Data Management - Hybrid…
Guoliang Li, Jiannan Wang, …
Hardcover
R3,020
Discovery Miles 30 200
Integrated Drought Management, Volume 2…
Vijay P. Singh, Deepak Jhajharia, …
Hardcover
R6,450
Discovery Miles 64 500
|