![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Since the appearance of the first edition of 'Energy Simulation in
Building Design', the use of computer-based appraisal tools to
solve energy design problems within buildings has grown rapidly. A
leading figure in this field, Professor Joseph Clarke has updated
his book throughout to reflect these latest developments. The book
now includes material on combined thermal/lighting and CFD
simulation, advanced glazings, indoor air quality and photovoltaic
components. This thorough revision means that the book remains the
key text on simulation for architects, building engineering
consultants and students of building engineering and environmental
design of buildings.
An examination of creative systems in structural and construction engineering taken from conference proceedings. Topics covered range from construction methods, safety and quality to seismic response of structural elements and soils and pavement analysis.
Functions as a self-study guide and textbook containing over 110 examples and 165 problem sets with answers, a comprehensive solutions manual, and computer programs that clarify arithmetic concepts-ideal for a two-semester course in structural dynamics, analysis and design of seismic structures, matrix methods of structural analysis, numerical methods in structural engineering, and advanced structural mechanics and design This book uses state-of-the-art computer technology to formulate displacement method with matrix algebra, facilitating analysis of structural dynamics and applications to earthquake engineering and UBC and IBC seismic building codes. Links code provisions to analytical derivations and compares individual specifications across codes, including the IBC-2000 With 3700 equations and 660 drawings and tables, Matrix Analysis of Structural Dynamics: Applications and Earthquake Engineering examines vibration of trusses, rigid and elastic frames, plane grid systems, and 3-D building systems with slabs, walls, bracings, beam-columns, and rigid zones presents single and multiple degree-of-freedom systems and various response behaviors for different types of time-dependent excitations outlines determinant, iteration, Jacobian, Choleski decomposition, and Sturm sequence eigensolution methods details proportional and nonproportional damping, steady-state vibration for undamped harmonic excitation, and transient vibration for general forcing function includes P-? effects, elastic media, coupling vibrations, Timoshenko theory, and geometric and material nonlinearity illustrates free and forced vibrations of frameworks and plates stressing isoparametric finite element formulation offers several numerical integration methods with solution criteria for error and stability behavior details models and computer calculations for bracings, RC beams and columns, coupling bending, and shear of low-rise walls and more Matrix Analysis
This book presents the development of an optimization platform for geotechnical engineering, which is one of the key components in smart geotechnics. The book discusses the fundamentals of the optimization algorithm with constitutive models of soils. Helping readers easily understand the optimization algorithm applied in geotechnical engineering, this book first introduces the methodology of the optimization-based parameter identification, and then elaborates the principle of three newly developed efficient optimization algorithms, followed by the ideas of a variety of laboratory tests and formulations of constitutive models. Moving on to the application of optimization methods in geotechnical engineering, this book presents an optimization-based parameter identification platform with a practical and concise interface based on the above theories. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.
This book provides a new framework for analysis of slope nonlinear stochastic seismic dynamic response based on the new theoretical tool of stochastic dynamics. The coupling effects of uncertainty of geological parameters, strong dynamic nonlinearity, and randomness of ground motion are considered in the process of the seismic dynamic stability assessment of slope. In this book, an intensity frequency non-stationary stochastic ground motion model based on time-domain stochastic process description is preliminarily established to characterize the randomness of earthquakes. The spatial distribution random field model of geotechnical parameters is established to describe the time-space variability of geotechnical parameters. Based on the basic theory of stochastic dynamics, the seismic stability performance evaluation method of slope is established. The slope seismic dynamic model test based on large complex shaking table is performed to verify and modify the proposed framework and method. This book sheds new light on the development of nonlinear seismic stochastic dynamics and seismic design of slope engineering.
This monograph examines the theoretical foundations of the spectral method for fatigue life determination. The authors discuss a rule of description of random loading states with the matrix of power spectral density functions of the stress/strain tensor components. Some chosen criteria of multiaxial fatigue failure are analyzed. The formula proposed in this book enables readers to determine power spectral density of the equivalent history directly from the components of the power spectral density matrix of the multidimensional stochastic process.
Buried pipes are a highly efficient method of transport. In fact, only open channels are less costly to construct. However, the structural mechanics of buried pipes can be complicated, and imprecisions in the properties of the soil envelope are usually too great to justify lengthy, complicated analyses. Designers and engineers need principles and methods that simplify analysis and maximize their knowledge of the pipe's performance and performance limits.
This book aims to give the reader a short, tractable and as far as possible complete introduction to the young theory of hypoplasticity, which is a new approach to constitutive modelling of granular media in terms of rational continuum mechanics.
This text describes topics discussed at the conference, including: tunnelling and construction in soft ground and rocks; geological investigations; tunnelling machines; planning for underground infrastructure; safety issues and environmental and social aspects of underground development.
A space frame is a three-dimensional framework for enclosing spaces in which all members are interconnected and act as a single entity. A benefit of this type of structure is that very large spaces can be covered, uninterrupted by support from the ground. John Chilton's book provides an up-to-date assessment of the use of space grid structures in buildings by reviewing methods of construction, various systems available and detailed studies of the use of space grids in modern buildings. The technical level is aimed at professional and student architects and engineers worldwide and it also serves as a useful construction manual. John Chilton is an engineer, currently teaching architectural students at Nottingham University where he is a senior lecturer. He has also undertaken considerable research in this field.
This book is written by subject experts based on the recent research results in steel plate shear walls considering the gravity load effect. It establishes a vertical stress distribution of the walls under compression and in-plane bending load and an inclination angle of the tensile field strip. The stress throughout the inclined tensile strip, as we consider the effect of the vertical stress distribution, is determined using the von Mises yield criterion. The shear strength is calculated by integrating the shear stress along the width. The proposed theoretical model is verified by tests and numerical simulations. Researchers, scientists and engineers in the field of structural engineering can benefit from the book. As such, this book provides valuable knowledge, useful methods, and practical algorithms that can be considered in practical design of building structures adopting a steel shear wall system.
This collection focuses on the development of novel approaches to address one of the most pressing challenges of civil engineering, namely the mitigation of natural hazards. Numerous engineering books to date have focused on, and illustrate considerable progress toward, mitigation of individual hazards (earthquakes, wind, and so forth.). The current volume addresses concerns related to overall safety, sustainability and resilience of the built environment when subject to multiple hazards: natural disaster events that are concurrent and either correlated (e.g., wind and surge); uncorrelated (e.g., earthquake and flood); cascading (e.g., fire following earthquake); or uncorrelated and occurring at different times (e.g., wind and earthquake). The authors examine a range of specific topics including methodologies for vulnerability assessment of structures, new techniques to reduce the system demands through control systems; instrumentation, monitoring and condition assessment of structures and foundations; new techniques for repairing structures that have suffered damage during past events, or for structures that have been found in need of strengthening; development of new design provisions that consider multiple hazards, as well as questions from law and the humanities relevant to the management of natural and human-made hazards.
This volume contains papers presented during the first international PLAXIS symposium. Topics covered include: general geo-technical aspects; tunnels and deep excavations, and education and research. This pack is meant for the user of the PLAXIS program, as well as engineers and researchers.
The prime purpose of this book is to serve as a design is of considerable value in helping the classroom text for the engineering or architec student make the transition from the often sim ture student. It will, however, also be useful to plistic classroom exercises to problems of the designers who are already familiar with design real world. Problems for solution by the student in other materials (steel, concrete, masonry) but follow the same idea. The first problems in each need to strengthen, refresh, or update their capa subject are the usual textbook-type problems, bility to do structural design in wood. Design but in most chapters these are followed by prob principles for various structural materials are lems requiring the student to make structural similar, but there are significant differences. planning decisions as well. The student may be This book shows what they are. required, given a load source, to find the magni The book has features that the authors believe tude of the applied loads and decide upon a set it apart from other books on wood structural grade of wood. Given a floor plan, the student design. One of these is an abundance of solved may be required to determine a layout of struc examples. Another is its treatment of loads. This tural members. The authors have used most of book will show how actual member loads are the problems in their classes, so the problems computed. The authors have found that students, have been tested."
FROM THE INTRODUCTION
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Based on the Lectures given during the Eurocourse on Experimental and Numerical Methods in Earthquake Engineering held at the Joint Research Centre, Ispra, Italy, October 7-11, 1991
This book forms the proceedings of the international workshop to be held in Essen, Germany. This workshop summarises the conclusion of the technical committee's investigations into the resistance of concrete to freeze-thaw attack, specific in this to resistance with or without de-icing chemicals. It presents the RILEM recommendations on testing the freeze-thaw and de-icing salt resistance of concrete.
To optimise formwork costs and minimise the time for its construction, the contractor needs to understand the guiding principles of safe and efficient formwork construction. He must also have some insight into the relative merits of the various methods, and should appreciate the practical details of formwork construction. This is a practical, heavily illustrated and comprehensive manual for the construction industry. It is equally useful as a text for building students and teachers and trainees. Its large format, and extensive use of line drawings make it clear and straightforward to use. |
![]() ![]() You may like...
Steel Structures - Design using FEM
Rolf Kindmann, Matthias Kraus
Paperback
Structural Integrity and Failure
Resat Oyguc, Faham Tahmasebinia
Hardcover
R3,329
Discovery Miles 33 290
Principles of Geotechnical Engineering…
Khaled Sobhan, Braja Das
Paperback
Reinforced Concrete in Europe, Including…
Albert Ladd 1860 Colby
Hardcover
R901
Discovery Miles 9 010
Thermal Control Thin Films - Spacecraft…
Jia-Wen Qiu, Yu-Dong Feng, …
Hardcover
R3,240
Discovery Miles 32 400
|