![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
"Theory of Arched Structures: Strength, Stability, Vibration"
presents detailed procedures for analytical analysis of the
strength, stability, and vibration of arched structures of
different types, using exact analytical methods of classical
structural analysis.
This book provides a general review of the literature on underground structures, combined with new specifications, engineering case studies, and numerical simulations based on the authors' research. It focuses on the basic concepts, theories, and methods of the design of underground structures. After an introduction, it covers various topics, such as elastic foundation beam theory and numerical analysis methods for underground structures, as well as the design of shallow underground structures, diaphragm wall structures, shield tunnel structures, caisson structures, immersed tube structures, and integral tunnel structures. It also includes tables for calculating elastic foundation beam. This book is intended for senior undergraduate and graduate students majoring in urban underground space engineering, building engineering, highway engineering, railway engineering, bridge and tunnel engineering, water conservancy and hydropower engineering.
Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures. The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study. Contents Part 1. Physical Modeling of Energy Piles at Different Scales 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui. 2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui. 3. Observed Response of Energy Geostructures, Peter Bourne-Webb. 4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari. 5. Centrifuge Modeling of Energy Foundations, John S. McCartney. Part 2. Numerical Modeling of Energy Geostructures 6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui. 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sebastien Burlon and Julien Habert. 8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart. 9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud. 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sebastien Burlon. 11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers. Part 3. Engineering Practice 12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis, Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin. 13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui. 14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud. About the Authors Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.
This book focuses on the optimization of a geometrically-nonlinear structure under stability constraint. It presents a deep insight into optimization-based and computer-assisted stability design of discrete structures. Coverage combines design sensitivity analysis developed in structural optimization and imperfection-sensitivity analysis developed in stability analysis.
This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.
This practical guide to the assessment and repair of historic
buildings is invaluable for structural engineers, architects,
surveyors and builders working in all aspects of building
conservation. Taking a practical step-by-step approach, the authors
discuss the appraisal of buildings and the differences in
structural behaviour between new and existing structures. Each
stage in the appraisal is explained, using examples from the
authors' own work.
The mechanics of structures with initial stresses is a traditional part of structural mechanics. It is closely related to the important problem of stability of structures. The basic concepts of elastic stability of structures go back to works by Euler (1759) and Bryan (1889). Later, it was found that the problem of deformation of solids with initial stresses is related to variational principles and nonlinear problems in elasticity; see Trefftz (1933), Marguerre (1938), Prager (1947), Hill (1958), Washuzu (1982). Historical detail up to the 1940s can be found in the book by Timoshenko (1953). Observing the basic concepts of the traditional mechanics of stressed structures, we agree that these are suitable for uniform structural elements (plates, beams, and so on) made of homogeneous materials, but not for complex structures (such as a network plate or a lattice mast) or structures made of composite materials (such as fiber reinforced or textile materials). Many concepts of the classical theory, such as a cross section or neutral plane (axis), correspond to no mechanical objects if we consider an inhomogeneous structure. As a result, we come to the conclusion that it would be useful to have a theory of thin inhomogeneous structures developed on the basis of 3-D elasticity theory with no simplifying assumptions (with no a priori hypothesis).
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
The purpose of the Structures Notebook is to explain, in the simplest possible terms, about the structure of 'things', and to demonstrate the fact that everything you see and touch, live in and use, living and man-made, has a structure which is acted upon by natural forces and reacts to these forces according to its form and material. The Structures Notebook was originally written by Tony Hunt as a
brief teaching aid for students at the Royal College of Art who had
very little, if any, knowledge of physics or structural behaviour.
It has now been expanded, and with this second edition, updated,
into a more comprehensive book while retaining a simple visual and
non-mathematical approach to structures.
Irregular engineering structures are subjected to complicated additional loads which are often beyond conventional design models developed for traditional, simplified plane models. This book covers detailed research and recent progress in seismic engineering dealing with seismic behaviour of irregular and set-back engineering structures. Experimental results as well as special topics of modern design are discussed in detail. In addition, recent progress in seismology, wave propagation and seismic engineering, which provides novel, modern modelling of complex seismic loads, is reported. Particular emphasis is placed on the newly developed rotational, seismic ground-motion effects. This book is a continuation of an earlier monograph which appeared in the same Springer series in 2013 (http://www.springer.com/gp/book/9789400753761).
Strong ground motion measuring and recording instruments play a major role in mitigation of seismic risk. The strong ground motion near the source of an earthquake describes the effects that endanger our built environment, and is also the most detailed clue concerning the source mechanism of the earthquake. The range of complexity that engulfs our understanding of the source parameters of a major earthquake (extent of the source mechanism, stress drop, wave propagation patterns) and how buildings and other works of construction respond to ground-transmitted dynamic effects may be overpowered by improved direct observations. Strong motion seismographs provide the information that enables scientists and engineers to resolve the many issues that are intertwined with practical problems of building safe communities worldwide. They may be installed as arrays close to major fault zones, consisting of many instruments arranged in some geometrical pattern, or in the vicinity and mounted on buildings. This book, which contains papers by invited authorities,
represents a unique interaction between seismologists and
earthquake engineers who examine issues of mutual concern in an
overlapping area of major interest. The papers have been grouped
around three major areas.
This volume contains a selection of peer-reviewed papers presented
at the International Conference on Temperature-Fatigue Interaction,
held in Paris, May 29-31, 2001, organised by the Fatigue Committee
of the Societe Francaise de Metallurgie et de Materiaux (SF2M),
under the auspices of the European Structural Integrity Society.
This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA). It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system's condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text for courses related to risk and reliability, infrastructure performance modeling and life-cycle assessment.
This advanced and graduate-level text and self-tutorial teaches readers to understand and to apply analytical design principles across the breadth of the engineering sciences. Emphasizing fundamentals, the book addresses the stability of key engineering elements such as rigid-body assemblage, beam-column, beam, rigid frame, thin plate, arch, ring, and shell. Each chapter contains numerous worked-out problems that clarify practical application and aid comprehension of the basics of stability theory, plus end-of-chapter review exercises. Others key features are the citing and comparison of different national building standards, use of non-dimensional parameters, and many tables with much practical data and simplified formula, that enable readers to use them in the design of structural components. First six chapters most suitable for undergraduate-level study and remaining chapters for graduate-level courses.
Simplified Structural Analysis and Design for Architects covers the basics of structural analysis and design in clear, practical terms. The book clarifies complex engineering topics through accessible, detailed examples and sample problems. Early chapters discuss the principles of statics, strength of materials, and structural analysis which represent the underlying basic material of structures and structural technology. The second part of the text focuses on steel structures, wood structures, and concrete structures, and outlines the design methods of some structural elements in a simplified manner and using some typical design examples. This edition includes two new chapters on the analysis of indeterminate structures and the simplified analysis of concrete indeterminate structures, as well as clearer figures and tables printed throughout. The final chapters of the book discuss the analysis of indeterminate structures. Concise and to the point, Simplified Structural Analysis and Design for Architects is particularly suitable for undergraduate and graduate architecture courses and courses in structural technology. The book is also a useful tool for practicing architects wishing to review the topic, and architecture graduates who are preparing for the licensing examination.
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.
Most books on the theory and analysis of beams and plates deal with
the classical (Euler-Bernoulli/Kirchoff) theories but few include
shear deformation theories in detail. The classical beam/plate
theory is not adequate in providing accurate bending, buckling, and
vibration results when the thickness-to-length ratio of the
beam/plate is relatively large. This is because the effect of
transverse shear strains, neglected in the classical theory,
becomes significant in deep beams and thick plates. This book
illustrates how shear deformation theories provide accurate
solutions compared to the classical theory. |
You may like...
Thin-Walled Structures - Research and…
J.Y.Richard Liew, V. Thevendran, …
Hardcover
R6,092
Discovery Miles 60 920
|