![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Strengthening of Concrete Structures Using Fiber Reinforced Polymers (FRP): Design, Construction and Practical Applications presents a best practice guide on the structural design and strengthening of bridge structures using advanced Fiber Reinforced Polymer (FRP) composites. The book briefly covers the basic concepts of FRP materials and composite mechanics, while focusing on practical design and construction issues, including inspection and quality control, paying special attention to the differences in various design codes (US, Japan, and Europe) and recommendations. At present, several design guides from the US, Japan, and Europe are available. These guidelines are often inconsistent and do not cover all necessary design and inspection issues to the same degree of detail. This book provides a critical review and comparison of these guidelines, and then puts forward best practice recommendations, filling a significant gap in the literature, and serving as an important resource for engineers, architects, academics, and students interested in FRP materials and their structural applications. Written from a practitioner's point-of-view, it is a valuable design book for structural engineers all over the world.
The "Intelligent Systems Series" encompasses theoretical studies, design methods, and real-world implementations and applications. It publishes titles in three core sub-topic areas: Intelligent Automation, Intelligent Transportation Systems, and Intelligent Computing. This volume, "Intelligent Vibration Control in Civil Engineering
Structures," focuses on design and property tests on different
intelligent control devices, some innovative control strategies and
analysis examples for structures with intelligent control devices,
and design and tests on intelligent controllers.
The choice of structural design and material is essential in preventing the external walls of a vessel from buckling under pressure. In this revised second edition of Pressure vessels, Carl Ross reviews the problem and uses both theoretical and practical examples to show how it can be solved for different structures. The second edition opens with an overview of the types of vessels under external pressure and materials used for construction. Axisymmetric deformation and different types of instability are discussed in the following chapters, with chapters 5 and 6 covering vibration of pressure vessel shells, both in water and out. Chapters 7 and 8 focus on novel pressure hulls, covering design, vibration and collapse, while chapters 9 and 10 concentrate on the design and non-linear analysis of submarine pressure hulls under external hydrostatic pressure. In chapter 11, the design, structure and materials of deep-diving underwater pressure vessels are discussed, focusing on their application in missile defence systems. Finally, chapter 12 analyses the vibration of a thin-walled shell under external water pressure, using ANSYS technology. Drawing on the author's extensive experience in engineering and design both in an industrial and academic capacity, the second edition of Pressure vessels is an essential reference for stress analysts, designers, consultants and manufacturers of pressure vessels, as well as all those with an academic research interest in the area.
Buildings should not only be functional but aesthetically pleasing. This requires the use of decorative materials both on the exterior and inside a building. Building decorative materials reviews the range of materials available and their potential applications. The book begins by considering the main types of decorative material and the physical, mechanical and other properties they require. It then discusses types and potential uses of decorative stone materials such as marble, granite, slate or gypsum. It then goes on to discuss the ways cement and concrete can be used for decorative effect, before considering the role of ceramics in such areas as tiling. The following chapters review decorative glass for windows or facades, metals and wood before assessing polymer materials such as plastics and textiles. The final group of chapters discuss coatings, including waterproofing materials, multi-functional materials used for such purposes as soundproofing and thermal insulation, and the use of more sustainable decorative materials. Building decorative materials is a useful reference for architects, civil engineers and those studying civil or structural engineering.
Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design.
From long-standing worries regarding the use of lead and asbestos to recent research into carcinogenic issues related to the use of plastics in construction, there is growing concern regarding the potential toxic effects of building materials on health. Toxicity of building materials provides an essential guide to this important problem and its solutions. Beginning with an overview of the material types and potential health hazards presented by building materials, the book goes on to consider key plastic materials. Materials responsible for formaldehyde and volatile organic compound emissions, as well as semi-volatile organic compounds, are then explored in depth, before a review of wood preservatives and mineral fibre-based building materials. Issues related to the use of radioactive materials and materials that release toxic fumes during burning are the focus of subsequent chapters, followed by discussion of the range of heavy metals, materials prone to mould growth, and antimicrobials. Finally, Toxicity of building materials concludes by considering the potential hazards posed by waste based/recycled building materials, and the toxicity of nanoparticles. With its distinguished editors and international team of expert contributors, Toxicity of building materials is an invaluable tool for all civil engineers, materials researchers, scientists and educators working in the field of building materials.
Adhesive bonding is often effective, efficient, and often necessary way to join mechanical structures. This important book reviews the most recent improvements in adhesive bonding and their wide-ranging potential in structural engineering. Part one reviews advances in the most commonly used groups of structural adhesives with chapters covering topics such as epoxy, polyurethane, silicone, cyanoacrylate, and acrylic adhesives. The second set of chapters covers the various types of adherends and pre-treatment methods for a range of structural materials such as metals, composites and plastics. Chapters in Part three analyse methods and techniques with topics on joint design, life prediction, fracture mechanics and testing. The final group of chapters gives useful and practical insights into the problems and solutions of adhesive bonding in a variety of hostile environments such as chemical, wet and extreme temperatures. With its distinguished editor and international team of contributors, Advances in structural adhesive bonding is a standard reference for structural and chemical engineers in industry and the academic sector.
Aircraft maintenance, repair and overhaul (MRO) requires unique information technology to meet the challenges set by today's aviation industry. How do IT services relate to aircraft MRO, and how may IT be leveraged in the future? Leveraging Information Technology for Optimal Aircraft Maintenance, Repair and Overhaul (MRO) responds to these questions, and describes the background of current trends in the industry, where airlines are tending to retain aircraft longer on the one hand, and rapidly introducing new genres of aircraft such as the A380 and B787, on the other. This book provides industry professionals and students of aviation MRO with the necessary principles, approaches and tools to respond effectively and efficiently to the constant development of new technologies, both in general and within the aviation MRO profession. This book is designed as a primer on IT services for aircraft engineering professionals and a handbook for IT professionals servicing this niche industry, highlighting the unique information requirements for aviation MRO and delving into detailed aspects of information needs from within the industry.
Many concrete structures and elements of concrete infrastructure have exceeded their original design lives and are deteriorating to an extent where they are becoming dangerous. The deterioration can be internal or not obvious and therefore only shows up with detailed testing. Non-destructive evaluation of reinforced concrete structures, Volume 1: Deterioration processes and standard test methods reviews the processes of deterioration and classical and standard test methods. Part one discusses deterioration of reinforced concrete and testing problems with chapters on topics such as key issues in the non-destructive testing of concrete structures, when to use non-destructive testing of reinforced concrete structures, deterioration processes in reinforced concrete, modelling ageing and corrosion processes in reinforced concrete structures, components in concrete and their impact on quality, and predicting the service life of reinforced concrete structures. Part two reviews classical and standard testing methods including microscopic examination of deteriorated concrete, the analysis of solid components and their ratios in reinforced concrete structures, the determination of chlorides in concrete structures, and investigating the original water content of reinforced concrete structures. With its distinguished editors and international team of contributors, Non-destructive evaluation of reinforced concrete structures, Volume 1: Deterioration processes and standard test methods will be a standard reference for civil and structural engineers as well as those concerned with making decisions regarding the safety of reinforced concrete structures.
Structural Cross Sections: Analysis and Design provides valuable information on this key subject covering almost all aspects including theoretical formulation, practical analysis and design computations, various considerations and issues related to cross-sectional behavior, and computer applications for determination of cross-sectional response. The presented approach can handle all complex shapes, material behaviors and configurations. The book starts with a clear and rigorous overview of role of cross-sections and their behavior in overall structural design process. Basic aspects of structural mechanics are reviewed and procedures to determine basic cross-sectional properties, stress and strain distributions, stress resultants and other response parameters, are provided. A brief discussion about the role of material behavior in cross-sectional response is also included. The unified and integrated approach to determine axial-flexural capacity of cross-sections is utilized in development of P-M and M-M interaction diagrams of cross-sections of various shapes. The behavior and design of cross-sections subjected to shear and torsion is also included with emphasis on reinforced concrete sections. Several detailed flow charts are included to demonstrate the procedures used in ACI, BS and Euro codes for design of cross-section subjected to shear and torsion, followed by solved examples. The book also presents the discussion about various factors that can lead to ductile response of cross-sections, especially those made of reinforced concrete. The definition and development of action-deformation curves especially moment-curvature (-) curve is discussed extensively. Various factors such as confinement, rebar distribution and axial load effect on the ductility are shown through examples. The use of moment-curvature curve to compute various section response parameters is also explained though equations and examples. Several typical techniques and materials for retrofitting of cross-sections of reinforced concrete beams, columns and slabs etc. are reviewed. A brief discussion of various informative references related to the evaluation and retrofitting of structures is included for practical applications. Towards the end, the book provides an overview of various software applications available for cross-section design and analysis. A framework for the development of a general-purpose cross-section analysis software, is presented and various features of few commercially available software packages are compared using some example cross-sections.
Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems. To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing. These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design.
Service life estimation is an area of growing importance in civil engineering both for determining the remaining service life of civil engineering structures and for designing new structural systems with well-defined periods of functionality. Service life estimation and extension of civil engineering structures provides valuable information on the development and use of newer and more durable materials and methods of construction, as well as the development and use of new techniques of estimating service life. Part one discusses using fibre reinforced polymer (FRP) composites to extend the service-life of civil engineering structures. It considers the key issues in the use of FRP composites, examines the possibility of extending the service life of structurally deficient and deteriorating concrete structures and investigates the uncertainties of using FRP composites in the rehabilitation of civil engineering structures. Part two discusses estimating the service life of civil engineering structures including modelling service life and maintenance strategies and probabilistic methods for service life estimation. It goes on to investigate non-destructive evaluation and testing (NDE/NDT) as well as databases and knowledge-based systems for service life estimation of rehabilitated civil structures and pipelines. With its distinguished editors and international team of contributors Service life estimation and extension of civil engineering structures is an invaluable resource to academics, civil engineers, construction companies, infrastructure providers and all those with an interest in improving the service life, safety and reliability of civil engineering structures.
Pipeline Leak Detection Handbook is a concise, detailed, and inclusive leak detection best practices text and reference book. It begins with the basics of leak detection technologies that include leak detection systems, and information on pipeline leaks, their causes, and subsequent consequences. The book moves on to further explore system infrastructures, performance, human factors, installation, and integrity management, and is a must-have resource to help oil and gas professionals gain a comprehensive understanding of the identification, selection, design, testing, and implantation of a leak detection system.
The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.
Written for civil, structural and geotechnical engineers, this book presents the latest research and practical experience in the design of high-arch dams in seismically active regions, from an author team that is highly active and experienced in the design, development and construction of 300m high arch dams. The book covers the entire subject of dam design for seismic regions, including seismic input mechanisms and modeling, non-linear analysis techniques for dam structure and foundations, concrete material properties, and simulation techniques for dam design. Of particular value are the real-world experimental data and design case studies that enhance the book and ensure that readers can apply the theoretical content to their own projects.
Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance provides a detailed review of lightweight composite materials and structures and discusses their use in the transport industry, specifically surface and air transport. The book covers materials selection, the properties and performance of materials, and structures, design solutions, and manufacturing techniques. A broad range of different material classes is reviewed with emphasis on advanced materials. Chapters in the first two parts of the book consider the lightweight philosophy and current developments in manufacturing techniques for lightweight composite structures in the transport industry, with subsequent chapters in parts three to five discussing structural optimization and analysis, properties, and performance of lightweight composite structures, durability, damage tolerance and structural integrity. Final chapters present case studies on lightweight composite design for transport structures.
Vibration of Functionally Graded Beams and Plates uses numerically efficient computational techniques to analyze vibration problems associated with FG beams and plates. Introductory material on FG materials and structural members, as well as a range of vibration and shear deformation theories are discussed, providing a valuable summary of these broader themes. The latest research and analysis of vibration in FG materials is presented in an application-oriented manner, linking the research to its importance in fields such as aerospace, nuclear power, and automotive engineering. The book also features research on the complicating effects of thermal environments, piezoelectricity, and elastic foundations. The innovative computational procedures and simulation results are shown in full throughout, providing a uniquely valuable resource for users of numerical modeling software. This book is essential reading for any researcher or practitioner interested in FG materials, or the design of technology for the nuclear power, aerospace, and automotive industries.
Since 1930 more than 100,000 new chemical compounds have been developed and insufficient information exists on the health assessment of 95 percent of these chemicals in which a relevant percentage are used in construction products. For instance Portland cement concrete, the most used material on the Planet (10.000 million tons/year that in the next 40 years will increase around 100 %) currently used in around 15% of total concrete production contains chemicals used to modify their properties, either in the fresh or hardened state. Biopolymers are materials that are developed from natural resources. They reduce dependence on fossil fuels and reduce carbon dioxide emissions. There is a worldwide demand to replace petroleum-based materials with renewable resources. Currently bio-admixtures represent just a small fraction of the chemical admixtures market (around 20%) but with environmental awareness for constituents in construction materials generally growing (the Construction Products Regulation is being enforced in Europe since 2013), the trend towards bio-admixtures is expected to continue. This book provides an updated state-of-the-art review on biopolymers and their influence and use as admixtures in the development of eco-efficient construction materials.
Rehabilitation of Pipelines Using Fibre-reinforced Polymer (FRP) Composites presents information on this critical component of industrial and civil infrastructures, also exploring the particular challenges that exist in the monitor and repair of pipeline systems. This book reviews key issues and techniques in this important area, including general issues such as the range of techniques using FRP composites and how they compare with the use of steel sleeves. In addition, the book discusses particular techniques, such as sleeve repair, patching, and overwrap systems.
|
You may like...
Light-Weight Steel and Aluminium…
P. Makelainen, P. Hassinen
Hardcover
R6,095
Discovery Miles 60 950
Fracture Mechanics: Applications and…
M. Fuentes, M. Elices, …
Hardcover
R3,206
Discovery Miles 32 060
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
Fundamentals of Multiscale Modeling of…
Wen-Jie Xia, Luis Ruiz Pestana
Paperback
R4,663
Discovery Miles 46 630
|