![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement provides a comprehensive treatment of sound radiation from subsonic flow over moving surfaces, which is the most widespread cause of flow noise in engineering systems. This includes fan noise, rotor noise, wind turbine noise, boundary layer noise, and aircraft noise. Beginning with fluid dynamics, the fundamental equations of aeroacoustics are derived and the key methods of solution are explained, focusing both on the necessary mathematics and physics. Fundamentals of turbulence and turbulent flows, experimental methods and numerous applications are also covered. The book is an ideal source of information on aeroacoustics for researchers and graduate students in engineering, physics, or applied math, as well as for engineers working in this field. Supplementary material for this book is provided by the authors on the website www.aeroacoustics.net. The website provides educational content designed to help students and researchers in understanding some of the principles and applications of aeroacoustics, and includes example problems, data, sample codes, course plans and errata. The website is continuously being reviewed and added to.
This book provides recent developments and improvements in the modeling as well as application examples and is a complementary work to the previous Lecture Notes Vols. 77 and 80. It summarizes the fundamental work from scientists dealing with the development of constitutive models for soils, especially cyclic loading with special attention to the numerical implementation. In this volume the neo-hypoplasticity and the ISA (intergranular strain anisotropy) model in their extended version are presented. Furthermore, new contact elements with non-linear constitutive material laws and examples for their applications are given.Comparisons between the experimental and the numerical results show the effectiveness and the drawbacks and provide a useful and comprehensive pool for all the constitutive model developers and scientists in geotechnical engineering, who like to prove the soundness of new approaches.
The book provides suggestions on how to start using bionic optimization methods, including pseudo-code examples of each of the important approaches and outlines of how to improve them. The most efficient methods for accelerating the studies are discussed. These include the selection of size and generations of a study's parameters, modification of these driving parameters, switching to gradient methods when approaching local maxima, and the use of parallel working hardware. Bionic Optimization means finding the best solution to a problem using methods found in nature. As Evolutionary Strategies and Particle Swarm Optimization seem to be the most important methods for structural optimization, we primarily focus on them. Other methods such as neural nets or ant colonies are more suited to control or process studies, so their basic ideas are outlined in order to motivate readers to start using them. A set of sample applications shows how Bionic Optimization works in practice. From academic studies on simple frames made of rods to earthquake-resistant buildings, readers follow the lessons learned, difficulties encountered and effective strategies for overcoming them. For the problem of tuned mass dampers, which play an important role in dynamic control, changing the goal and restrictions paves the way for Multi-Objective-Optimization. As most structural designers today use commercial software such as FE-Codes or CAE systems with integrated simulation modules, ways of integrating Bionic Optimization into these software packages are outlined and examples of typical systems and typical optimization approaches are presented. The closing section focuses on an overview and outlook on reliable and robust as well as on Multi-Objective-Optimization, including discussions of current and upcoming research topics in the field concerning a unified theory for handling stochastic design processes.
Marine Concrete Structures: Design, Durability and Performance comprehensively examines structures located in, under, or in close proximity to the sea. A major emphasis of the book is on the long-term performance of marine concrete structures that not only represent major infrastructure investment and provision, but are also required to operate with minimal maintenance. Chapters review the design, specification, construction, and operation of marine concrete structures, and examine their performance and durability in the marine environment. A number of case studies of significant marine concrete structures from around the world are included which help to reinforce the principles outlined in earlier chapters and provide useful background to these types of structures. The result is a thorough and up-to-date reference source that engineers, researchers, and postgraduate students in this field will find invaluable.
This book summarizes the technical advances in recent decades and the various theories on rock excavation raised by scholars from different countries, including China and Russia. It not only focuses on rock blasting but also illustrates a number of non-blasting methods, such as mechanical excavation in detail. The book consists of 3 parts: Basic Knowledge, Surface Excavation and Underground Excavation. It presents a variety of technical methods and data from diverse sources in the book, making it a valuable theoretical and practical reference resource for engineers, researchers and postgraduates alike.
Characteristics and Uses of Steel Slag in Building Construction focuses predominantly on the utilization of ferrous slag (blast furnace and steel slag) in building construction. This extensive literature review discusses the worldwide utilization of ferrous slag and applications in all sectors of civil engineering, including structural engineering, road construction, and hydro-technical structures. It presents cutting-edge research on the characteristics and properties of ferrous slag, and its overall impact on the environment.
This book offers valuable insights and provides effective tools useful for imagining, creating, and promoting novel and challenging developments in structural mechanics. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues and innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. It is a valuable resource for postgraduate students, researchers and practitioners dealing with theoretical and practical issues in structural engineering.
This volume gathers the latest advances, innovations, and applications in the field of geotechnical engineering, as presented by leading researchers and engineers at the 7th Italian National Congress of Geotechnical Researchers (CNRIG 2019), entitled "Geotechnical Research for the Protection and Development of the Territory" (Lecco, Italy, July 3-5, 2019). The congress is intended to promote exchanges on the role of geotechnical research and its findings regarding the protection against natural hazards, design criteria for structures and infrastructures, and the definition of sustainable development strategies. The contributions cover a diverse range of topics, including infrastructural challenges, underground space utilization, and sustainable construction in problematic soils and situations, as well as geo-environmental aspects such as landfills, environmental and energy geotechnics, geotechnical monitoring, and risk assessment and mitigation. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
Concrete is the second most used building material in the world after water. The problem is that over time the material becomes weaker. As a response, researchers and designers are developing self-sensing concrete which not only increases longevity but also the strength of the material. Self-Sensing Concrete in Smart Structures provides researchers and designers with a guide to the composition, sensing mechanism, measurement, and sensing properties of self-healing concrete along with their structural applications
Fiber-reinforced polymer (FRP) composites are becoming increasingly popular as a material for rehabilitating aging and damaged structures. "Rehabilitation of Metallic Civil Infrastructure Using Fiber-Reinforced Polymer (FRP) Composites" explores the use of fiber-reinforced composites for enhancing the stability and extending the life of metallic infrastructure such as bridges. Part I provides an overview of materials and repair, encompassing topics of joining steel to FRP composites, finite element modeling, and durability issues. Part II discusses the use of FRP composites to repair steel components, focusing on thin-walled (hollow) steel sections, steel tension members, and cracked aluminum components. Building on Part II, the third part of the book reviews the fatigue life of strengthened components. Finally, Part IV covers the use of FRP composites to rehabilitate different types of metallic infrastructure, with chapters on bridges, historical metallic structures and other types of metallic infrastructure. "Rehabilitation of Metallic Civil Infrastructure Using
Fiber-Reinforced Polymer (FRP) Composites" represents a standard
reference for engineers and designers in infrastructure and
fiber-reinforced polymer areas and manufacturers in the
infrastructure industry, as well as academics and researchers in
the field.
The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 - 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.
This book presents the basic theories of Plastic Mechanics of Geomaterial, including the static and dynamic mechanical properties, nonlinear and classical plastic theory, yield surface theory, hardening model, flow rule and loading-unloading criterion, the calculation theory of principal stress axe rotation, and limit analysis of geomaterial and the latest advances in FEM limit analysis. It also set forth the typical static and dynamic constitutive model of geomaterial in detail. Broadening our understanding of the basic mechanical properties and constitutive model for geomaterial, the book helps readers to establish and select the most appropriate constitutive model according to the specific engineering problems and geomaterial characteristics. This book is a valuable resource for designers and researchers in fields related to geotechnical engineering, and it can also be used as a textbook for graduate courses.
" The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, "Fluid-Structure Interaction, Volume 1" covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to
Volume 1, meaning that Volume 1 now mainly treats the dynamics of
systems subjected to internal flow, whereas in Volume 2 the axial
flow is in most cases external to the flow or annular. "
This book sheds light on the shear behavior of Fiber Reinforced Concrete (FRC) elements, presenting a thorough analysis of the most important studies in the field and highlighting their shortcomings and issues that have been neglected to date. Instead of proposing a new formula, which would add to an already long list, it instead focuses on existing design codes. Based on a comparison of experimental tests, it provides a thorough analysis of these codes, describing both their reliability and weaknesses. Among other issues, the book addresses the influence of flange size on shear, and the possible inclusion of the flange factor in design formulas. Moreover, it reports in detail on tests performed on beams made of concrete of different compressive strengths, and on fiber reinforcements to study the influence on shear, including size effects. Lastly, the book presents a thorough analysis of FRC hollow core slabs. In fact, although this is an area of great interest in the current research landscape, it remains largely unexplored due to the difficulties encountered in attempting to fit transverse reinforcement in these elements.
Earthquakes represent a major risk to buildings, bridges and other
civil infrastructure systems, causing catastrophic loss to modern
society. Handbook of seismic risk analysis and management of civil
infrastructure systems reviews the state of the art in the seismic
risk analysis and management of civil infrastructure systems.
This manual provides the reader with an accurate and convenient method for estimatig direct labor for general contrsuction work for any given system, plant, or location. Though this book, the reader has a reliable process of obtaining and streamlining an efficent model of operation.
This text contains contributions from various authors on topics related to probabilistic methods used for the design of structures. Several of the papers were initially prepared for advanced courses on structural reliability or on probabilistic methods for structural design. These courses have been held in several countries and have been given by various groups of lecturers. They were aimed at engineers and researchers that had already been exposed to structural reliability methods, and presented overviews of the various topics. The book includes a selection of these contributions, which should be of use to future courses or for engineers and researchers who want an up-to-date overview. It is complementary to the existing textbooks on structural reliability, which normally cover the basic topics but exclude the more specialized aspects. In addition, several papers have been specially prepared for this book, complementing the others in providing an overall account of recent advances in the field. Among the topics covered are modelling of uncertainty, prediction of the strength of components, load modelling and combination, assessment of structural systems, stochastic finite elements and design consideration. This volume is directed at practitioners as well as researchers.
This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.
Research into and design of deployable structures requires the combination of many skills including knowledge of traditional mathematics, understanding of nonlinear structural behavior, use of modern numerical methods of simulation, and a great deal of engineering ingenuity. Accessible to practicing structural engineers and graduate students with no previous knowledge of the field, this title formulates and solves the complex engineering design problems with which deployable structures are associated. It also presents the issue of design of snap-through type deployable structures in an organized way which will be of interest to more experienced readers. Up-to-date practice and recent research results are highlighted throughout.
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installation processes is a very challenging task. Some hints about possible effects and their consideration are given in this book which may provide a help for such estimations which are still not possible to be given in a satisfactory manner. |
You may like...
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,082
Discovery Miles 50 820
Fracture Mechanics: Applications and…
M. Fuentes, M. Elices, …
Hardcover
R3,206
Discovery Miles 32 060
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
Light-Weight Steel and Aluminium…
P. Makelainen, P. Hassinen
Hardcover
R6,095
Discovery Miles 60 950
Single Piles and Pile Groups Under…
Lymon C. Reese, William F Van Impe
Hardcover
R3,692
Discovery Miles 36 920
|