![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
The non-destructive evaluation of civil engineering structures in reinforced concrete is becoming an increasingly important issue in this field of engineering. This book proposes innovative ways to deal with this problem, through the characterization of concrete durability indicators by the use of non-destructive techniques. It presents the description of the various non-destructive techniques and their combination for the evaluation of indicators. The processing of data issued from the combination of NDE methods is also illustrated through examples of data fusion methods. The identification of conversion models linking observables, obtained from non-destructive measurements, to concrete durability indicators, as well as the consideration of different sources of variability in the assessment process, are also described. An analysis of in situ applications is carried out in order to highlight the practical aspects of the methodology. At the end of the book the authors provide a methodological guide detailing the proposed non-destructive evaluation methodology of concrete indicators.
The Planning Guide to Piping Design, Second Edition, covers the entire process of managing and executing project piping designs, from conceptual to mechanical completion, also explaining what roles and responsibilities are required of the piping lead during the process. The book explains proven piping design methods in step-by-step processes that cover the increasing use of new technologies and software. Extended coverage is provided for the piping lead to manage piping design activities, which include supervising, planning, scheduling, evaluating manpower, monitoring progress and communicating the piping design. With newly revised chapters and the addition of a chapter on CAD software, the book provides the mentorship for piping leads, engineers and designers to grasp the requirements of piping supervision in the modern age.
Describes the basics of aircraft flight simulation and control. Features a new chapter on the dynamics and control principles of drones and UAVs. Includes new sections, chapter problems, examples, and simulator exercises. Includes case studies of control laws. Discusses modeling and simulation for determining the aircraft’s response to typical control inputs with MATLAB®/Simulink® examples.
Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions and rain-and-wind-induced vibrations, among others.
Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses.
This volume presents the proceedings of the first major international conference for over twenty years on the state-of-the-art of ground anchorage technology. Leading researchers and practitioners from around the world came together to discuss all the aspects of design, construction and performance of ground anchorages for the use in stabilisation of structures, excavations and slopes. Practical issues relating to construction and installation of anchorages are considered in a series of examples of engineering projects from around the world.
Topology optimization of structures and composite materials is a new and rapidly expanding field of mechanics which now plays an ever-increasing role in most branches of technology, such as aerospace, mechanical, structural, civil and ma terials engineering, with important implications for energy production as well as building and environmental sciences. It is a truly "high-tech" field which requires advanced computer facilities and computational methods, whilst involving unusual theoretical considerations in pure mathematics. Topology optimization deals with some of the most difficult problems of mechanical sciences, but it is also of consid erable practical interest because it can achieve much greater savings than conven tional (sizing or shape) optimization. Extensive research into topology optimization is being carried out in most of the developed countries of the world. The workshop addressed the state of the art of the field, bringing together re searchers from a diversity of backgrounds (mathematicians, information scientists, aerospace, automotive, mechanical, structural and civil engineers) to span the full breadth and depth of the field and to outline future developments in research and avenues of cooperation between NATO and Partner countries. The program cov ered * theoretical (mathematical) developments, * computer algorithms, software development and computational difficulties, and * practical applications in various fields of technology. A novel feature of the workshop was that, in addition to shorter discussions after each lecture, a 30 minutes panel discussion took place in each sesssion, which made this ARW highly interactive and more informal.
So far in the twenty-first century, there have been many developments in our understanding of materials behaviour and in their technology and use. This new edition has been expanded to cover recent developments such as the use of glass as a structural material. It also now examines the contribution that material selection makes to sustainable construction practice, considering the availability of raw materials, production, recycling and reuse, which all contribute to the life cycle assessment of structures. As well as being brought up-to-date with current usage and performance standards, each section now also contains an extra chapter on recycling. Covers the following materials:
This new edition maintains our familiar and accessible format, starting with fundamental principles and continuing with a section on each of the major groups of materials. It gives you a clear and comprehensive perspective on the whole range of materials used in modern construction. A must have for Civil and Structural engineering students, and for students of architecture, surveying or construction on courses which require an understanding of materials."
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors.
Tunnel Boring Machine (TBM) constructed tunnels are widespread, and can deliver significant environmental and cost benefits. However, as noted in the noteworthy examples of TBM traffic tunnels presented in this book, there are still important challenges associated with them, linked in particular to structural safety in the event of earthquakes, as well as cost and safety issues during operation. To face these challenges, Innovation in TBM Traffic Tunnels presents three innovative concepts in the field of construction of TBM rail and road tunnels: the TISB concept that improves the structural safety of those built on soft soil in seismic areas, and the TMG and TMF concepts, for rail and road tunnels, respectively, that allow for significant reduction of their cost and the improvement of safety during operation. Examples of the application of these new concepts in the conceptual design of specific tunnel cases are presented and compared with solutions based on common approaches, demonstrating the additional benefits of these concepts. The book also draws attention to other innovations in TBM tunnelling that may improve the construction of tunnels in the future, especially when using the concepts mentioned above. Innovation in TBM Traffic Tunnels is aimed at professionals involved in the planning, design, and construction of tunnels for transport infrastructure, including authorities, consultants and construction companies, worldwide.
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
Onshore Structural Design Calculations: Energy Processing Facilities provides structural engineers and designers with the necessary calculations and advanced computer software program instruction for creating effective design solutions using structural steel and concrete, also helping users comply with the myriad of international codes and standards for designing structures that is required to house or transport the material being processed. In addition, the book includes the design, construction, and installation of structural systems, such as distillation towers, heaters, compressors, pumps, fans, and building structures, as well as pipe racks and mechanical and electrical equipment platform structures. Each calculation is discussed in a concise, easy-to-understand manner that provides an authoritative guide for selecting the right formula and solving even the most difficult design calculation.
This accessible guide to seismic design examines what earthquakes do to buildings and what can be done to improve building response to earthquakes. International examples and photographs are included as important learning aids in understanding the effects of earthquakes on structures.
Peter Smith has joined forces with skilled consultants to take his piping series to the next level. The Planning Guide to Piping Design covers the entire process of planning a plant model project from conceptual to mechanical completion, and explains where the piping lead falls in the process along with his roles and responsibilities. Piping Engineering Leads (or PEL's) used to only receive on-the-job training to learn the operation of producing a process plant. Over time, more schools and programs have developed a more advanced curriculum for piping engineers and designers. However, younger generations of engineers and designers are growing up with a much more technological view of piping design and are in need of a handbook that will explain the proven methods of planning and monitoring the piping design in step-by-step processes. This handbook will provide mentors in the process piping industries the bridge needed for the upcoming engineer and designer to grasp the requirements of piping supervision in the modern age.
In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called flow-induced vibration. This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provides the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow-induced vibrations.
Construction Engineering Calculations and Rules of Thumb begins with a brief, but rigorous, introduction to the mathematics behind the equations that is followed by self-contained chapters concerning applications for all aspects of construction engineering. Design examples with step-by-step solutions, along with a generous amount of tables, schematics, and calculations are provided to facilitate more accurate solutions through all phases of a project, from planning, through construction and completion.
This book provides the reader with a review of the most relevant research on the structural characterization and seismic retrofitting of adobe construction. It offers a complete review of the latest research developments, and hence the relevance of the field. The book starts with an introductory discussion on adobe construction and its use throughout the world over time, highlighting characteristics and performance of adobe masonry structures as well as different contributions for cultural heritage conservation (Chapter 1). Then, the seismic behaviour of adobe masonry buildings is addressed, including examples of real performance during recent earthquakes (Chapter 2). In the following chapters, key research investigations on seismic response assessment and retrofitting of adobe constructions are reviewed. The review deals with the following issues: mechanical characterization of adobe bricks and adobe masonry (Chapters 3 and 4); quasi-static and shaking table testing of adobe masonry walls and structures (Chapters 5 and 6); non-destructive and minor-destructive testing for characterization of adobe constructions (Chapter 7); seismic strengthening techniques for adobe constructions (Chapter 8); and numerical modelling of adobe structures (Chapter 9). The book ends with Chapter 10, where some general conclusions are drawn and research needs are identified. Each chapter is co-authored by a group of experts from different countries to comprehensively address all issues of adobe constructions from a worldwide perspective. The information covered in this book is fundamental to support civil engineers and architects in the rehabilitation and strengthening of existing adobe constructions and also in the design of new adobe buildings. This information is also of interest to researchers, by providing a summary of existing research and suggesting possible directions for future research efforts.
Pile Design and Construction Rules of Thumb presents Geotechnical and Civil Engineers a comprehensive coverage of Pile Foundation related theory and practice. Based on the author's experience as a PE, the book brings concise theory and extensive calculations, examples and case studies that can be easily applied by professional in their day-to-day challenges. In its first part, the book covers the fundamentals of Pile Selection: Soil investigation, condition, pile types and how to choose them. In the second part it addresses the Design of Pile Foundations, including different types of soils, pile groups, pile settlement and pile design in rock. Next, the most extensive part covers Design Strategies and contains chapters on loading analysis, load distribution, negative skin friction, design for expansive soils, wave equation analysis, batter piles, seismic analysis and the use of softwares for design aid. The fourth part covers Construction Methods including hammers, Inspection, cost estimation, load tests, offshore piling, beams and caps. In this new and updated edition the author has incorporated new pile designs such as helical, composite, wind turbine monopiles, and spiral coil energy piles. All calculations have been updated to most current materials characteristics and designs available in the market. Also, new chapters on negative skin friction, pile driving, and pile load testing have been added. Practicing Geotechnical, and Civil Engineers will find in this book an excellent handbook for frequent consult, benefiting from the clear and direct calculations, examples, and cases. Civil Engineering preparing for PE exams may benefit from the extensive coverage of the subject.
This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson's ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.
Sustainability of Construction Materials, Second Edition, explores an increasingly important aspect of construction. In recent years, serious consideration has been given to environmental and societal issues in the manufacturing, use, disposal, and recycling of construction materials. This book provides comprehensive and detailed analysis of the sustainability issues associated with these materials, mainly in relation to the constituent materials, processing, recycling, and lifecycle environmental impacts. The contents of each chapter reflect the individual aspects of the material that affect sustainability, such as the preservation and repair of timber, the use of cement replacements in concrete, the prevention and control of metal corrosion and the crucial role of adhesives in wood products.
The significant increase in the use of composite materials in all phases of structures, from spacecraft to marine vessels, from bridges and domes on civil buildings to sporting goods, has called for the development of rigorous mathematical methods capable of modelling, designing and optimizing composites under any given set of conditions. This book provides solutions to many problems in the analysis of the effective and local properties of composite structures, as well as to problems of their design and optimization on account of strength, stiffness and weight minimization requirements. The numerous results are presented in the form of analytical formulas or numerical algorithms. Programs providing numerical solutions to many engineering analysis, design and optimization problems for the composite and reinforced structures, including fibre-reinforced materials, laminated and angle-ply shells and plates, ribbed, wafer and honeycomb-like composite shells and plates, are available on the Internet
Disaster Resilient Cities: Concepts and Practical Examples discusses natural disasters, their complexity, and the exploration of different ways of thinking regarding the resilience of structures. The book provides a blueprint for structural designers to better prepare structures for all types of natural hazards during the design stage. Brief and readable, this book analyzes various examples of disaster damage from earthquakes, tsunamis, and floods, together with their causal mechanisms. Practical methods to plan and design structures based on their regions, cities, as well as the particular countermeasures are also included for study.
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain.
1) Includes exemplary MATLAB codes 2) Provides a comprehensive foundation in Fourier methods, essential for a mathematical approach to engineering 3) Applies MFS to hot topics in the field: multi-domain, multi- physics, and multi-scale characteristics 4) Applies Fourier method to structural vibrations, acoustics and vibro-acoustic 5) Aids engineers in solving boundary value problems and differential equations |
You may like...
Control and Estimation of Distributed…
W. Desch, F. Kappel, …
Hardcover
R2,822
Discovery Miles 28 220
|