![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This proceedings brings together one hundred and ten selected papers presented at the 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2015), which was held in Changsha, China, during October 15-18, 2015.To satisfy the increasingly urgent requirement of reducing the weight of vehicle structures and increasing passenger safety, ICHSU2015 provided an excellent international platform for researchers to share their knowledge and results in theory, methodology and applications of advanced high strength steel and press hardening technology.This conference aroused great interests and attentions from domestic and foreign researchers in hot stamping field. Experts in this field from Australia, China, Germany and Sweden, contributed to the collection of research results and developments. The papers cover almost all the current topics of advanced high strength steel and press hardening technology.
This book is based on the author's 34 years of experience as a teacher/researcher of coastal engineering and management and on recent reflections on contemporary issues, such as consequences of failure, impacts of rising sea levels, aging infrastructure, real estate development and contemporary decision making, design and education. This textbook for undergraduate students, postgraduate students and practicing engineers covers waves, structures, sediment movement, coastal management, and contemporary coastal design and decision making, presenting both basic principles and engineering solutions. It discusses the traditional methods of analysis and synthesis (design), but also contemporary design taking into account environmental impacts, consequences of failure, and current concerns such as global warming, aging infrastructure, working with stakeholder groups, regulators, etc. This second edition expands greatly on current topics of failure and resilience that surfaced as a result of recent disasters from hurricane surges and tsunamis. It also updates the discussion of design and decision making in the 21st century, with many new examples presented.
Structural health monitoring (SHM) uses one or more in situ sensing systems placed in or around a structure, providing real-time evaluation of its performance and ultimately preventing structural failure. Although most commonly used in civil engineering, such as in roads, bridges, and dams, SHM is now finding applications in other engineering environments, such as naval and aerospace engineering. Written by a highly respected expert in the field, Structural Sensing, Health Monitoring, and Performance Evaluation provides the first comprehensive coverage of SHM. The text begins with a review of the various types of sensors currently used in SHM, including point sensors and noncontact systems. Subsequent chapters explain the processing and interpretation of data from a number of sensors working in parallel. After considering issues related to the structures themselves, the author surveys the design of a tailor-made SHM system. He also presents a collection of case studies, many of which are drawn from his own experiences. Exploring the power of sensors, this book shows how SHM technologies can be applied to a variety of structures and systems, including multistory buildings, offshore wind energy plants, and ecological systems.
In our world of seemingly unlimited computing, numerous analytical approaches to the estimation of stress, strain, and displacement-including analytical, numerical, physical, and analog techniques-have greatly advanced the practice of engineering. Combining theory and experimentation, computer simulation has emerged as a third path for engineering design and performance evaluation. As a result, structural engineers working in the practical world of engineering must apply and, ideally, thrive on these idealizations of science-based theories. Analyzing the major achievements in the field, Understanding Structural Engineering demonstrates how to bring science to engineering design. This book illustrates: Key conceptual breakthroughs in structural engineering in the twentieth century The science of structural engineering from basic mechanics and computing to the ultimate process of engineering design How engineers implement theory to practice through idealizations and simplifications Current and future trends in structural engineering Developments and advancements in structural engineering hinge on a few key breakthroughs in concepts, simplifications and idealizations. Simplification, inherent in the art of structural engineering, is a key theme throughout this book. But the authors go further. Their clear explanations of the role and impact of new, science-based developments shows you how to put them into practice.
Ground motion due to earthquake excitation often induces disastrous disturbances that severely damage structures and their contents. Conventional earthquake-resistant design focuses on the strengthening of structures to avoid collapse, while little attention is paid to the prevention of damage as it is almost impossible to construct completely "earthquake proof" structures at reasonable cost. This state-of-the-art volume explores seismic isolation as an alternative and performance-based design approach to minimise earthquake induced loads and resulting damage in low to medium-rise buildings. A discussion of the characteristics, advantages and limitations of seismic isolation is followed by a demonstration of its capability to decouple a structure from the damaging effects of ground acceleration. Describes currently used seismic isolation systems in detail. Evaluates the performance of seismically isolated structures and provides examples of their response under earthquake action. Proposes a preliminary design methodology for seismically isolated structures. Accessible to both students and practising structural engineers who need to familiarise themselves with this approach.
For buildings and factories located near railway or subway lines, the vibrations caused by the moving trains, especially at high speeds, may be annoying to the residents or detrimental to the high-precision production lines. However, there is a lack of simple and efficient tools for dealing with the kind of environmental vibrations, concerning simulation of the radiation of infinite boundaries; irregularities in soils, buildings and wave barriers; and dynamic properties of the moving vehicles. This book is intended to fill such a gap. Compared with the boundary element method (BEM) for solving the half-space problems, the finite/infinite element method (FIEM) presented in this book has the following advantages: ??? It requires less effort in formulation and computation. ??? It can be directly incorporated in an existing FEM analysis program. ??? It is capable of simulating the irregularities in buildings, soils and tunnels. ??? It can be used to evaluate the efficiency of various wave barriers for vibration reduction. The methodology presented in the book can be adopted to analyze the vibrations caused by road traffic as well.
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997."
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
'A fascinating celebration of the impact that structural engineering has on all our lives.[an] eye-opening book' The Sunday Times In BUILT, structural engineer Roma Agrawal takes a unique look at how construction has evolved from the mud huts of our ancestors to skyscrapers of steel that reach hundreds of metres into the sky. She unearths how engineers have tunnelled through kilometres of solid mountains; how they've bridged across the widest and deepest of rivers, and tamed Nature's precious - and elusive - water resources. She tells vivid tales of the visionaries who created the groundbreaking materials in the Pantheon's record-holding concrete dome and the frame of the record-breaking Eiffel Tower. Through the lens of an engineer, Roma examines tragedies like the collapse of the Quebec Bridge, highlighting the precarious task of ensuring people's safety they hold at every step. With colourful stories of her life-long fascination with buildings - and her own hand-drawn illustrations - Roma reveals the extraordinary secret lives of structures.
Mechanics of Functionally Graded Material Structures is an authoritative and fresh look at various functionally graded materials, customizing them with various structures. The book is devoted to tailoring material properties to the needed structural performance. The authors pair materials with the appropriate structures based upon their purpose and use.Material grading of structures depending upon thickness, axial and polar directions are discussed. Three dimensional analysis of rectangular plates made of functional graded materials and vibrational tailoring of inhomogeneous beams and circular plates are both covered in great detail. The authors derive novel closed form solutions that can serve as benchmarks that numerical solutions can be compared to. These are published for the first time in the literature. This is a unique book that gives the first exposition of the effects of various grading mechanisms on the structural behavior as well as taking into account vibrations and buckling.
Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures. The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study. Contents Part 1. Physical Modeling of Energy Piles at Different Scales 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui. 2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui. 3. Observed Response of Energy Geostructures, Peter Bourne-Webb. 4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari. 5. Centrifuge Modeling of Energy Foundations, John S. McCartney. Part 2. Numerical Modeling of Energy Geostructures 6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui. 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sebastien Burlon and Julien Habert. 8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart. 9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud. 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sebastien Burlon. 11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers. Part 3. Engineering Practice 12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis, Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin. 13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui. 14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud. About the Authors Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
The book deals with the geotechnical analysis and design of foundation systems for high-rise buildings and other complex structures with a distinctive soil-structure interaction. The basics of the analysis of stability and serviceability, necessary soil investigations, important technical regulations and quality and safety assurance are explained and possibilities for optimised foundation systems are given. Additionally, special aspects of foundation systems such as geothermal activated foundation systems and the reuse of existing foundations are described and illustrated by examples from engineering practice.
The book is a comprehensive volume on multi-hazards and their management for a sustainable built environment. It focuses on the role of civil engineering in building disaster resilient society. This book brings together all diverse disciplines of civil engineering and related areas (for example, geotechnical engineering, water resources engineering, structural engineering, transportation engineering, environmental engineering, construction management, GIS, and remote sensing) towards a common goal of disaster resilience through an interdisciplinary approach. It contains methods and case studies focusing on civil engineering solutions to reduce the disaster risk. The book contents are aligned in line with the priorities set by UN-Sendai Framework for Disaster Risk Reduction and UN-SDGs to promote a global culture of risk-awareness and disaster reduction. The book will be a useful comprehensive reference for disaster risk reduction beneficial for engineering students, teaching faculty, researchers, industry professionals and policymakers.
This book deals with matrix methods of structural analysis for linearly elastic framed structures. It starts with background of matrix analysis of structures followed by procedure to develop force-displacement relation for a given structure using flexibility and stiffness coefficients. The remaining text deals with the analysis of framed structures using flexibility, stiffness and direct stiffness methods. Simple programs using MATLAB for the analysis of structures are included in the appendix. Key Features Explores matrix methods of structural analysis for linearly elastic framed structures Introduces key concepts in the development of stiffness and flexibility matrices Discusses concepts like action and redundant coordinates (in flexibility method) and active and restrained coordinates (in stiffness method) Helps reader understand the background behind the structural analysis programs Contains solved examples and MATLAB codes
This book is the companion volume to Design of High Strength Steel Reinforced Concrete Columns - A Eurocode 4 Approach. This book provides a large number of worked examples for the design of high strength steel reinforced concrete (SRC) columns. It is based on the Eurocode 4 approach, but goes beyond this to give much needed guidance on the narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete. Special considerations are given to resistance calculations that maximize the full strength of the materials, with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. These examples build on the design principles set out in the companion volume, allowing the readers to practice and understand the EC4 methodology easily. Structural engineers and designers who are familiar with basic EC4 design should find these design examples particularly helpful, whilst engineering undergraduate and graduate students who are studying composite steel concrete design and construction should easily gain further understanding from working through the worked examples which are set out in a step-by-step clearly fashion.
Traditionally, engineers have used laboratory testing to
investigate the behavior of metal structures and systems. These
numerical models must be carefully developed, calibrated and
validated against the available physical test results. They are
commonly complex and very expensive. From concept to assembly,
"Finite Element Analysis and Design of Metal Structures "provides
civil and structural engineers with the concepts and procedures
needed to build accurate numerical models without using expensive
laboratory testing methods. Professionals and researchers will find
"Finite Element Analysis and Design of Metal Structures" a valuable
guide to finite elements in terms of its applications.
Hard Guidance on Preventing Disproportionate Collapse Disproportionate collapse is a pressing issue in current design practice. Numerous causes are possible - especially forms of extreme loading, such as blast, fire, earthquake, or vehicle collisions. But it is the mechanism and its prevention which are of especial interest and concern. After the World Trade Center collapse in 2001, interest was sparked, and it is now imperative for a design engineer to have sufficient knowledge on both the analysis and design against disproportionate collapse. Detailed structural design guidance for preventing this has been developed in Europe and the US - such as BS5950 in the UK, and guidance from the Department of Defense and the General Services Administration in the US. However, Structural Analysis and Design to Prevent Disproportionate Collapse is the first systematic text in the market to help design engineers or structural engineering students to properly understand this guidance. Covers the design and analysis of a structure to prevent disproportionate collapse Provides an understanding of disproportionate collapse problems for different structures under different loads Contains detailed knowledge on the design and progressive collapse analysis of complex structures Incorporates ABAQUS (R), ETABS, SAP2000, and Highlights 3D Modeling Techniques As progressive collapse analysis is a distinctive and complicated procedure, it normally requires an ability to use a modern commercial finite element package, and Structural Analysis and Design to Prevent Disproportionate Collapse features a detailed introduction to the use of FE programs such as ABAQUS (R) in progressive collapse analysis. In addition, case studies are performed using 3D FE models based on various types of structures such as multi-storey buildings, long-span space structures, and bridges. These models replicate real collapse incidents and prestigious construction projects, such as progressive collapse analysis of the Twin Towers, structural fire analysis of World Trade Center 7, blast analysis of the Murrah Federal Building and progressive collapse analysis of the Millau Viaduct, which help designers to fully understand the failure mechanisms and effective mitigation methods in practice.
This enlightening textbook for undergraduates on civil engineering degree courses explains structural design from its mechanical principles, showing the speed and simplicity of effective design from first principles. This text presents good approximate solutions to complex design problems, such as "Wembley-Arch" type structures, the design of thin-walled structures, and long-span box girder bridges. Other more code-based textbooks concentrate on relatively simple member design, and avoid some of the most interesting design problems because code compliant solutions are complex. Yet these problems can be addressed by relatively manageable techniques. The methods outlined here enable quick, early stage, "ball-park" design solutions to be considered, and are also useful for checking finite element analysis solutions to complex problems. The conventions used in the book are in accordance with the Eurocodes, especially where they provide convenient solutions that can be easily understood by students. Many of the topics, such as composite beam design, are straight applications of Eurocodes, but with the underlying theory fully explained. The techniques are illustrated through a series of worked examples which develop in complexity, with the more advanced questions forming extended exam type questions. A comprehensive range of fully worked tutorial questions are provided at the end of each section for students to practice in preparation for closed book exams.
This text presents principles and construction techniques applicable to builders, householders and communities who are building in disaster-prone areas. The principles are clearly and simply presented, with an emphasis on improving hazard-resistance for minimum cost. They seek to encourage builders to improve their current practices rather than setting building standards or providing hazard-resistance performance specifications.;The book includes sections on siting for safety - siting considerations in areas prone to high winds, earthquakes, flooding; and siting to avoid ground instability problems; building safely in masonry: principles of robust construction and building to resist earthquakes for buildings of brick, block, earth and stone masonry; building safely in timber - principles of robust construction and building to resist high winds and earthquake forces in timber framed buildings; and building safely in concrete - principles of robust construction and building to resist earthquake forces in reinforced concrete framed buildings.
This newly updated book offers a comprehensive introduction to the scope and nature of engineering work, taking a rigorous but common sense approach to the solution of engineering problems. The text follows the planning, modelling and design phases of engineering projects through to implementation or construction, explaining the conceptual framework for undertaking projects, and then providing a range of techniques and tools for solutions. It focuses on engineering design and problem solving, but also involves economic, environmental, social and ethical considerations. This third edition expands significantly on the economic evaluation of projects and also includes a new section on intractable problems and systems, involving a discussion of wicked problems and soft systems methodology as well as the approaches to software development. Further developments include an array of additional interest boxes, worked examples, problems and up-to date references. Case studies and real-world examples are used to illustrate the role of the engineer and especially the methods employed in engineering practice. The examples are drawn particularly from the fields of civil and environmental engineering, but the approaches and techniques are more widely applicable to other branches of engineering. The book is aimed at first-year engineering students, but contains material to suit more advanced undergraduates. It also functions as a professional handbook, covering some of the fundamentals of engineering planning and design in detail.
This third edition of Examples in Structural Analysis uses a step-by-step approach and provides an extensive collection of fully worked and graded examples for a wide variety of structural analysis problems. It presents detailed information on the methods of solutions to problems and the results obtained. Also given within the text is a summary of each of the principal analysis techniques inherent in the design process and where appropriate, an explanation of the mathematical models used. The text emphasises that software should only be used if designers have appropriate knowledge and understanding of the mathematical assumptions, modelling and limitations inherent in the programs they use. It establishes the use of hand-methods for obtaining approximate solutions during preliminary design and an independent check on the answers obtained from computer analysis. What is New in the Third Edition: A new chapter covers the analysis and design of cables and arches subjected to concentrated loads and uniformly distributed loads. For cables without or with simply supported pinned trusses or steel girder beams through equally spaced hangers, tension forces, support reactions, sags and slopes in cables are determined. For two-pinned or three-pinned arches with parabolic, arched and semi-circular shapes, axial forces, radial shear forces and bending moments at various sections of arches are determined. An existing chapter has been expanded to the construction and use of influence lines for pin-pointed trusses and lattice girders. Also, the chapter Direct Stiffness Methods has been revisited and amended.
The book provides a critical assessment of the current knowledge and indicates new challenges which are brought about by the present times in fighting man-made and natural hazards in transient analysis of structures. The latter concerns both permanently fixed structures, such as those built to protect people and/or sensitive storage material (e.g. military installations) or special structures in transportation systems (e.g. bridges, tunnels), and moving structures (such as trains, planes, ships or cars). The present threat of terrorist attacks or accidental explosions, the climate change which brings strong stormy winds or even the destructive earthquake motion that occurs in previously inactive regions or brings about tsunamis, are a few examples of the kind of applications addressed in this work. Problems of such diversity cannot be placed within a single traditional scientific discipline, but call for the expertise in probability theory for quantifying the cause, interaction problems for better understanding the physical nature of the problems, as well as modeling and computational techniques for improving the representation of inelastic behavior mechanisms and providing the optimal design.
This text is directed at the heart of Engineering Geology where geology is used to identify potential problems arising from ground conditions. It describes how to investigate those conditions and to define an engineering response that will either avoid or reduce or even eliminate the problems revealed. The book presents the "big picture" that is so often lacking when only site details are available, but necessary for adequate engineering solutions. |
![]() ![]() You may like...
Reinforced Concrete Construction in…
Henry 1846-1935 Adams, Ernest Romney 1873-1930 Matthews
Hardcover
R906
Discovery Miles 9 060
Circular Economy - Assessment and Case…
Subramanian Senthilkannan Muthu
Hardcover
R3,376
Discovery Miles 33 760
Laminated Composite Doubly-Curved Shell…
Francesco Tornabene, Nicholas Fantuzzi, …
Hardcover
R3,887
Discovery Miles 38 870
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,549
Discovery Miles 35 490
Armco Iron Rust-resisting Products.
American Rolling Mill Company
Hardcover
R789
Discovery Miles 7 890
Structural Integrity and Failure
Resat Oyguc, Faham Tahmasebinia
Hardcover
R3,329
Discovery Miles 33 290
|