![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This textbook covers the collision of a moving, falling or flying object on a rigid barrier or a structural element, and the transmission of the transient action to the rest of the structural system. It is the only up-to-date book on this under-researched topic that confronts engineers on a day-to-day basis. The book deals with a range of real-life engineering problems and focuses on the application of knowledge and skillsets from structural analysis and structural dynamics. Fundamental principles and concepts on structural collision are first introduced, followed by their specific applications such as vehicular collision on bridge structures, boulder impact on rockfall barriers and collision by hail and windborne debris. Analytical solutions provided are in the form of closed-form expressions, which can be directly adopted in conventional manual calculations. The use of spreadsheets to simulate the dynamic response behaviour is also covered. The only standalone book covering the topic from a civil engineering perspective Practical guidance on real-life engineering problems, and use of computational and physical methods Conveys methodology validated experimentally The book provides an excellent guide for practitioners and sets out fundamental principles for graduate students in civil, structural and mechanical engineering.
The integration of technology in education has provided tremendous opportunity for learners of all ages. In today's technology-focused society, the traditional classroom setting is being transformed through online learning platforms, collaborative and experimental methods, and digital educational resources that go hand-in-hand with non-digital learning devices. The Handbook of Research on Applied E-Learning in Engineering and Architecture Education reviews the latest research available on the implementation of digital tools and platforms within the framework of technical education, specifically in the subjects of architecture and engineering. Taking a global approach to the topic of online learning environments for technical education at all grade levels, this comprehensive reference work is ideally designed for use by educators, instructional designers, and researchers from around the world. This handbook contains pertinent research on a variety of educational topics including online learning platforms, mobile and blended learning, collaborative learning environments, gaming in education, informal learning, and educational assessment.
This book presents cutting-edge research, recent breakthroughs, and unresolved challenges associated with 2D nanomaterials to combat energy and environmental issues. The book discusses the state-of-the-art design and innovations engaged to novel 2D nanomaterials, viz. Transition metal compounds (TMDs, TMOs, TMHs), MXenes, elemental 2D analogs (silicene, phosphorene, arsenene, etc.), Metal-organic frameworks (MOFs), etc. It presents the latest trends on top-down and bottom-up synthesis approaches and properties followed by the critical status and progress of these 2D nanomaterials in the field of energy and environment. The topics cover wide spectrum of 2D nanomaterials applications including energy storage/conversion, air/water/soil remediation, adsorption, photocatalytic degradation, desalination and membrane filtration, detection and sensing, drug delivery systems, and nano-encapsulated agro-formulations. The subsequent section includes a comprehensive account on the safety risk assessment of 2D nanomaterials towards the ecosystem and human health. This book will be beneficial for beginners, researchers, and professionals from diverse fields interested in 2D nanomaterials for energy and environmental sustainability.
This book presents a theoretical approach that allows the analysis of structures with magnetorheological and electrorheological layers, and shows, with the help of examples, how the mechanical behaviour of thin-walled laminated structures can be influenced. It consists of six chapters: Chapter 1 presents a brief overview of derivation approaches for theories of thin-walled structures, modelling of composites and modelling of laminated and sandwich structures. Chapter 2 describes the equivalent single layer model for thin laminated cylindrical shells, including the special cases of plates and beams. In addition to the classical mechanical properties, it also considers the electrorheological and magnetorheological properties. Chapter 3 presents the elastic buckling of laminated beams, plates, and cylindrical shells, discussing various problems, such as the influence of the boundary conditions, external loading and magnetic fields. It also suggests different approximations for asymptotic methods. Chapter 4 focuses on the free vibrations of elastic laminated beams, plates and cylindrical shells, investigating the influence of the boundary conditions and other factors. Chapter 5 presents the latest results concerning vibration of laminated structures composed of smart materials and discusses in detail the influence of electric and magnetic fields on smart structures. These results provide insights into the optimal design of these structures. Lastly, Chapter 6 features a short appendix presenting asymptotic estimates and series.
1) Demonstrates alternative definitions of the fuzzy safety factor 2) Explains properties of materials and their structural deterioration 3) Covers optimal probabilistic design 4) Aids the reader in solving problems associated with uncertainty
- Introduces a general approach to the method of integral transforms based on the spectral theory of the linear differential operators. - Presents a new, versatile foundation model with a number of advantages over the ground-based models currently used in practical calculations. - Provides new transforms which will aid in solving various problems relevant to bars, beams, plates, and shells in particular for the structures on elastic foundation. - Examines the methods of solving boundary-value problems typical for structural mechanics and related fields.
Soft Clay Engineering and Ground Improvement covers the design and implementation of ground improvement techniques as applicable to soft clays. This particular subject poses major geotechnical challenges in civil engineering. Not only civil engineers, but planners, architects, consultants and contractors are now aware what soft soils are and the risks associated with development of such areas. The book is designed as a reference and useful tool for those in the industry, both to consultants and contractors. It also benefits researchers and academics working on ground improvement of soft soils, and serves as an excellent overview for postgraduates. University lecturers are beginning to incorporate more ground improvement topics into their curricula, and this text would be ideal for short courses for practicing engineers. It includes several examples to assist a newcomer to carry out preliminary designs. The three authors, each with dozens of years of experience, have witnessed and participated in the rapid evolvement of ground improvement in soft soils. In addition, top-tier professionals who deal with soft clays and ground improvement on a daily basis have contributed, providing their expertise in dealing with real-world problems and practical solutions.
Topology optimization of structures and composite materials is a new and rapidly expanding field of mechanics which now plays an ever-increasing role in most branches of technology, such as aerospace, mechanical, structural, civil and ma terials engineering, with important implications for energy production as well as building and environmental sciences. It is a truly "high-tech" field which requires advanced computer facilities and computational methods, whilst involving unusual theoretical considerations in pure mathematics. Topology optimization deals with some of the most difficult problems of mechanical sciences, but it is also of consid erable practical interest because it can achieve much greater savings than conven tional (sizing or shape) optimization. Extensive research into topology optimization is being carried out in most of the developed countries of the world. The workshop addressed the state of the art of the field, bringing together re searchers from a diversity of backgrounds (mathematicians, information scientists, aerospace, automotive, mechanical, structural and civil engineers) to span the full breadth and depth of the field and to outline future developments in research and avenues of cooperation between NATO and Partner countries. The program cov ered * theoretical (mathematical) developments, * computer algorithms, software development and computational difficulties, and * practical applications in various fields of technology. A novel feature of the workshop was that, in addition to shorter discussions after each lecture, a 30 minutes panel discussion took place in each sesssion, which made this ARW highly interactive and more informal.
The Engineering of Foundations, Slopes and Retaining Structures rigorously covers the construction, analysis, and design of shallow and deep foundations, as well as retaining structures and slopes. It includes complete coverage of soil mechanics and site investigations. This new edition is a well-designed balance of theory and practice, emphasizing conceptual understanding and design applications. It contains illustrations, applications, and hands-on examples that continue across chapters. Soil mechanics is examined with full explanation of drained versus undrained loading, friction and dilatancy as sources of shear strength, phase transformation, development of peak effective stress ratios, and critical-state and residual shear strength. The design and execution of site investigations is evaluated with complete discussion of the CPT and SPT. Additional topics include the construction, settlement and bearing capacity of shallow foundations, as well as the installation, ultimate resistance and settlement of deep foundations. Both traditional knowledge and methods and approaches based on recent progress are available. Analysis and design of retaining structures and slopes, such as the use of slope stability software stability calculations, is included. The book is ideal for advanced undergraduate students, graduate students and practicing engineers and researchers.
This book presents the foundation and validation of the Cosserat Plate Theory, numerical experiments of deformation and vibration, and the unique properties of the Cosserat plates. Our approach incorporates the high accuracy assumptions of the Cosserat plate deformation consistent with the Cosserat Elasticity equilibrium equations, constitutive formulas, strain-displacement and torsion-microrotation relations. The Cosserat Plate Theory is parametric, where the "splitting parameter" minimizes the Cosserat plate energy. The validation of the theory is based on the comparison with the three-dimensional Cosserat Elastostatics and Elastodynamics. The numerical results are obtained using the Finite Element Method (FEM) specifically developed to solve the parametric system of equations. The analysis of deformation of a variety of Cosserat plates shows the stress concentration reduction, higher stiffness of Cosserat plates, and the size-effect related to the microstructure. The analysis of vibration of Cosserat plates predicts size-related properties of the plate vibration, the existence of the additional so-called Cosserat plate resonances, and the dynamic anisotropy, related to the dependency of the resonances on the microelement's shapes and orientations.
contains detailed derivations of the governing equations, analytical solutions, variational solutions, and numerical solutions (FEM) of the classical and shear deformation theories of beams and axisymmetric circular plates includes analytical solutions of the linear theories and finite element analysis of linear and nonlinear theories details static as well as transient response based on exact, the Navier, and variational solution approaches for beams and axisymmetric circular plates
This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson's ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors.
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
Onshore Structural Design Calculations: Energy Processing Facilities provides structural engineers and designers with the necessary calculations and advanced computer software program instruction for creating effective design solutions using structural steel and concrete, also helping users comply with the myriad of international codes and standards for designing structures that is required to house or transport the material being processed. In addition, the book includes the design, construction, and installation of structural systems, such as distillation towers, heaters, compressors, pumps, fans, and building structures, as well as pipe racks and mechanical and electrical equipment platform structures. Each calculation is discussed in a concise, easy-to-understand manner that provides an authoritative guide for selecting the right formula and solving even the most difficult design calculation.
The fourth edition of Design of Structural Elements: Concrete, Steelwork, Masonry and Timber Designs to Eurocodes is a concise single-volume introduction to the design of structural elements in concrete, steel, timber, masonry and composites. It provides design principles and guidance in line with Eurocodes, current as of 2021. Topics include the philosophy of design, sustainable development, basic structural concepts, and material properties. After an overview of structural design, the book contains self-contained chapters with numerous diagrams and worked examples on design in reinforced concrete, structural steelwork and steel/concrete composites, masonry and timber based on EN 1990-1997. Selected extracts from these publications assist familiarity. Elements considered cover reinforced concrete and composite floors, isolated foundation, cantilever retaining wall, load-bearing and panel walls, stud wall and connections. The text is ideal for student civil and structural engineers on degree and diploma courses, and also practising civil and structural engineers and other built environment professions. The online Support Materials for adopting course instructors includes an extensive set of solutions to the problems in the book and PowerPoint slides for use in lectures: www.routledge.com/9781032076317.
This accessible guide to seismic design examines what earthquakes do to buildings and what can be done to improve building response to earthquakes. International examples and photographs are included as important learning aids in understanding the effects of earthquakes on structures.
Peter Smith has joined forces with skilled consultants to take his piping series to the next level. The Planning Guide to Piping Design covers the entire process of planning a plant model project from conceptual to mechanical completion, and explains where the piping lead falls in the process along with his roles and responsibilities. Piping Engineering Leads (or PEL's) used to only receive on-the-job training to learn the operation of producing a process plant. Over time, more schools and programs have developed a more advanced curriculum for piping engineers and designers. However, younger generations of engineers and designers are growing up with a much more technological view of piping design and are in need of a handbook that will explain the proven methods of planning and monitoring the piping design in step-by-step processes. This handbook will provide mentors in the process piping industries the bridge needed for the upcoming engineer and designer to grasp the requirements of piping supervision in the modern age.
In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called flow-induced vibration. This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provides the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow-induced vibrations.
Construction Engineering Calculations and Rules of Thumb begins with a brief, but rigorous, introduction to the mathematics behind the equations that is followed by self-contained chapters concerning applications for all aspects of construction engineering. Design examples with step-by-step solutions, along with a generous amount of tables, schematics, and calculations are provided to facilitate more accurate solutions through all phases of a project, from planning, through construction and completion.
This book provides the reader with a review of the most relevant research on the structural characterization and seismic retrofitting of adobe construction. It offers a complete review of the latest research developments, and hence the relevance of the field. The book starts with an introductory discussion on adobe construction and its use throughout the world over time, highlighting characteristics and performance of adobe masonry structures as well as different contributions for cultural heritage conservation (Chapter 1). Then, the seismic behaviour of adobe masonry buildings is addressed, including examples of real performance during recent earthquakes (Chapter 2). In the following chapters, key research investigations on seismic response assessment and retrofitting of adobe constructions are reviewed. The review deals with the following issues: mechanical characterization of adobe bricks and adobe masonry (Chapters 3 and 4); quasi-static and shaking table testing of adobe masonry walls and structures (Chapters 5 and 6); non-destructive and minor-destructive testing for characterization of adobe constructions (Chapter 7); seismic strengthening techniques for adobe constructions (Chapter 8); and numerical modelling of adobe structures (Chapter 9). The book ends with Chapter 10, where some general conclusions are drawn and research needs are identified. Each chapter is co-authored by a group of experts from different countries to comprehensively address all issues of adobe constructions from a worldwide perspective. The information covered in this book is fundamental to support civil engineers and architects in the rehabilitation and strengthening of existing adobe constructions and also in the design of new adobe buildings. This information is also of interest to researchers, by providing a summary of existing research and suggesting possible directions for future research efforts.
Pile Design and Construction Rules of Thumb presents Geotechnical and Civil Engineers a comprehensive coverage of Pile Foundation related theory and practice. Based on the author's experience as a PE, the book brings concise theory and extensive calculations, examples and case studies that can be easily applied by professional in their day-to-day challenges. In its first part, the book covers the fundamentals of Pile Selection: Soil investigation, condition, pile types and how to choose them. In the second part it addresses the Design of Pile Foundations, including different types of soils, pile groups, pile settlement and pile design in rock. Next, the most extensive part covers Design Strategies and contains chapters on loading analysis, load distribution, negative skin friction, design for expansive soils, wave equation analysis, batter piles, seismic analysis and the use of softwares for design aid. The fourth part covers Construction Methods including hammers, Inspection, cost estimation, load tests, offshore piling, beams and caps. In this new and updated edition the author has incorporated new pile designs such as helical, composite, wind turbine monopiles, and spiral coil energy piles. All calculations have been updated to most current materials characteristics and designs available in the market. Also, new chapters on negative skin friction, pile driving, and pile load testing have been added. Practicing Geotechnical, and Civil Engineers will find in this book an excellent handbook for frequent consult, benefiting from the clear and direct calculations, examples, and cases. Civil Engineering preparing for PE exams may benefit from the extensive coverage of the subject.
The piling industry has, in recent years, developed a variety of press-in piling technologies with a view to mitigate noise & vibration nuisance. This book focuses on the "Walk-on-Pile" type press-in piling system, which offers an alternative engineering solution for piling works. This type of piling has unique features, including the application of the compact piling machine using pre-installed piles as a source of reaction force to jack in a new pile by hydraulic pressure. Moreover, the machine can walk along the top of piles already installed, thus enabling piling in a limited space and headroom with minimum disruption to social functions and services of existing infrastructure. These features are opening up a new horizon in piling, leading to novel application of embedded walls previously considered impossible. This introductory book provides a historical development of press-in piling and various challenging applications worldwide as well as scientific research outcomes, forming a valuable source of reference for readers who are unfamiliar with press-in piling, including project owners, design engineers, practical engineers as well as researchers and students.
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems comprises 330 papers that were presented at the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022, Cape Town, South Africa, 5-7 September 2022). The topics featured may be clustered into six broad categories that span the themes of mechanics, modelling and engineering design: (i) mechanics of materials (elasticity, plasticity, porous media, fracture, fatigue, damage, delamination, viscosity, creep, shrinkage, etc); (ii) mechanics of structures (dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) numerical modelling and experimental testing (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber); (v) innovative concepts, sustainable engineering and special structures (nanostructures, adaptive structures, smart structures, composite structures, glass structures, bio-inspired structures, shells, membranes, space structures, lightweight structures, etc); (vi) the engineering process and life-cycle considerations (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). Two versions of the papers are available: full papers of length 6 pages are included in an e-book, while short papers of length 2 pages, intended to be concise but self-contained summaries of the full papers, are in this printed book. This work will be of interest to civil, structural, mechanical, marine and aerospace engineers, as well as planners and architects. |
You may like...
On Meaningful Scientific Laws
Jean-Claude Falmagne, Christopher Doble
Hardcover
Further Advances in Pragmatics and…
Alessandro Capone, Marco Carapezza, …
Hardcover
R2,913
Discovery Miles 29 130
Calligraphy and Hand Lettering for…
Heartfully Artful Designs
Hardcover
Pragmatics - A Resource Book for…
Joan Cutting, Kenneth Fordyce
Paperback
R914
Discovery Miles 9 140
Database Systems - Design…
Carlos Coronel, Steven Morris
Paperback
|