![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Seismic Evaluation, Damage, and Mitigation in Structures covers recent developments in the field of seismic performance assessment of structures. Earthquakes are one of the main natural hazards that can directly cause damage to a structure or even instigate a structural collapse, resulting in significant economic and human loss of life. In the event of an earthquake where many buildings and infrastructure components are not able to function afterward, or if extensive repair and associated disruption are needed, it can be extremely costly and take a long time to resolve. Divided into three parts, this book reviews and discusses earthquake-induced damage evaluation in structures, the repair of structural and non-structural components, and seismic damage mitigation strategies. With contributions from the leading experts in the field, this book is for earthquake engineers, structural engineers, PhD students studying civil engineering, people who can easily inspect and repair structures for quick reoccupation, and for those who understand topics such as design and damage mitigation, and limited structural or non-structural damage in seismic events.
Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry.
Corrosion of Steel in Concrete Structures, Second Edition covers the corrosion of steel reinforced concrete, along with a variety of new topics and future trends. Sections discuss the theoretical concepts of corrosion of steel in concrete structures, analyze the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, cover measurements and evaluations, such as electrochemical techniques and acoustic emission, review protection and maintenance methods, and analyze modeling. Topics covered include the steel/concrete interface, the influence of steel microstructure on its corrosion in concrete, data collection and analysis on chloride-induced corrosion, corrosion detection devices, and new advances.
Whirl Flutter of Turboprop Aircraft Structures, Second Edition explores the whirl flutter phenomenon, including theoretical, practical, analytical and experimental aspects of the matter. Sections provide a general overview regarding aeroelasticity, discussions on the physical principle and the occurrence of whirl flutter in aerospace practice, and experimental research conducted, especially from the 60s. Other chapters delve into analytical methods such as basic and advanced linear models, non-linear and CFD based methods, certification issues including regulation requirements, a description of possible certification approaches, and several examples of aircraft certification from aerospace. Finally, a database of relevant books, reports and papers is provided. This updated and expanded second edition covers new chapters including both analytical and experimental aspects of the subject matter.
Tooling for Composite Aerospace Structures: Manufacturing and Applications offers a comprehensive discussion on the design, analysis, manufacturing and operation of tooling that is used in the lamination of composite materials and assembly. Chapters cover general topics, the materials that are typically used for tooling, design aspects and recommendations on how to approach the design, and what engineers need to consider, including examples of designs and their pros and cons, how to perform these type of details, and the methods of inspection needed to ensure quality control. The book concludes with an outlook on the industry and the future.
Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes, Second Edition is the definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. The book integrates the development of fundamental theories, formulas, and mathematical models with user-friendly interactive computer programs that are written in MATLAB. This unique merger of technical reference and interactive computing provides instant solutions to a variety of engineering problems, and in-depth exploration of the physics of deformation, stress and motion by analysis, simulation, graphics, and animation.
Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more. Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials.
Welding Deformation and Residual Stress Prevention, Second Edition provides readers with both fundamental theoretical knowledge about welding deformation and stress as well as unique computational approaches for predicting and mitigating the effects of deformation and residual stress on materials. This second edition has been updated to include new techniques and applications, outlining advanced finite element methods such as implicit scheme, explicit scheme, and hybrid scheme, and coupling analysis among thermal-metallurgy-mechanics. Non-destructive measurement methods for residual stresses are introduced, such as X-ray diffraction, the indentation technique, the neutron diffraction method, and various synchrotron X-ray diffraction techniques. Destructive measurement techniques are covered as well, such as block cutting for releasing residual stress, blind hole drilling, deep hole drilling, the slit cutting method, sectional contour method, and general inherent strain method. Various industrial applications of the material behavior and computational approaches are featured throughout.
Offshore Structures: Design, Construction and Maintenance, Second Edition covers all types of offshore structures and platforms employed worldwide. As the ultimate reference for selecting, operating and maintaining offshore structures, this book provides a roadmap for designing structures which will stand up even in the harshest environments. Subsea pipeline design and installation is also covered in this edition, as is the selection of the proper type of offshore structure, the design procedure for the fixed offshore structure, nonlinear analysis (Push over) as a new technique to design and assess the existing structure, and more. With this book in hand, engineers will have the most up-to-date methods for performing a structural lifecycle analysis, implementing maintenance plans for topsides and jackets and using non-destructive testing.
Energy-Efficient Retrofit of Buildings by Interior Insulation: Materials, Methods and Tools offers readers comprehensive coverage of current research in German Language Countries. Chapters provide an overview on the development of energy efficiency for building retrofits and the role of internal insulation, cover materials with chapters on Brick, Wood, Plaster, Clay, and Natural Stone, explain the impact of internal insulation in those materials and how to cope with problems such as moisture build, mold and algae growth, provide practical advice on how to apply internal insulation in the most effective way, including Salt Efflorescence, Noise Protection, Fire Prevention, and more. The practical approach of the book, with examples in all chapters, makes it valuable for Civil and Architectural Engineers involved with building retrofit. The book may also be useful to researchers in the field of Building Physics due to the breadth of the coverage.
Analysis and Design of Plated Structures: Stability, Second Edition covers the latest developments in new plate solutions and structural models for plate analysis. Completely revised and updated by its distinguished editors and international team of contributors, this edition also contains new chapters on GBT-based stability analysis and the finite strip and direct strength method (DSM). Other sections comprehensively cover bracing systems, storage tanks under wind loading, the analysis and design of light gauge steel members, applications of high strength steel members, cold-formed steel pallet racks, and the design of curved steel bridges. This is a comprehensive reference for graduate students, researchers and practicing engineers in the fields of civil, structural, aerospace, mechanical, automotive and marine engineering.
Pipe Drafting and Design, Fourth Edition is a tried and trusted guide to the terminology, drafting methods, and applications of pipes, fittings, flanges, valves, and more. Those new to this subject will find no better introduction on the topic, with easy step-by-step instructions, exercises, review questions, hundreds of clear illustrations, explanations of drawing techniques, methodology and symbology for piping and instrumentation diagrams, piping arrangement drawings and elevations, and piping isometric drawings. This fully updated and expanded new edition also explains procedures for building 3D models and gives examples of field-scale projects showing flow diagrams and piping arrangement drawings in the real world. The latest relevant standards and codes are also addressed, making this a valuable and complete reference for experienced engineers, too.
The Feature-Driven Method for Structural Optimization details a novel structural optimization method within a CAD framework, integrating structural optimization and feature-based design. The book presents cutting-edge research on advanced structures and introduces the feature-driven structural optimization method by regarding engineering features as basic design primitives. Consequently, it presents a method that allows structural optimization and feature design to be done simultaneously so that feature attributes are preserved throughout the design process. The book illustrates and supports the effectiveness of the method described, showing potential applications through numerical modeling techniques and programming. This volume presents a high-performance optimization method adapted to engineering structures-a novel perspective that will help engineers in the computation, modeling and design of advanced structures.
Acoustic Emission and Related Non-destructive Evaluation Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications, Second Edition presents innovative Acoustic Emission (AE) and related non-destructive evaluation (NDE) techniques that are used for damage detection and inspection of aged and deteriorated concrete structures. This new edition includes multi-modal applications such as DIC, thermography, X-ray and in-situ implementations, all of which are helpful in better understanding feasibility and underlying challenges. This new edition is an essential resource for civil engineers, contractors working in construction, and materials scientists working both in industry and academia.
Written for civil, structural and geotechnical engineers, this book presents the latest research and practical experience in the design of high-arch dams in seismically active regions, from an author team that is highly active and experienced in the design, development and construction of 300m high arch dams. The book covers the entire subject of dam design for seismic regions, including seismic input mechanisms and modeling, non-linear analysis techniques for dam structure and foundations, concrete material properties, and simulation techniques for dam design. Of particular value are the real-world experimental data and design case studies that enhance the book and ensure that readers can apply the theoretical content to their own projects.
Infrastructure Computer Vision delves into this field of computer science that works on enabling computers to see, identify, process images and provide appropriate output in the same way that human vision does. However, implementing these advanced information and sensing technologies is difficult for many engineers. This book provides civil engineers with the technical detail of this advanced technology and how to apply it to their individual projects.
Mechanical Properties of Polycarbonate: Experiment and Modeling for Aeronautical and Aerospace Applications provides a detailed description on experimental characterization, material modeling and finite element simulation method for polycarbonate in aeronautical and aerospace applications. The book presents the experiment facilities and methods used in characterizing the mechanical properties of polycarbonate in a large range of strain rates and temperatures. The constitutive modeling of polycarbonate and the finite element simulation of polycarbonate products under impact loading are illustrated in detail. Finally, an optimization methodology is devised to optimize the injection molding process parameters for high mechanical performance of the product under impact loading.
Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Biolubricants - Science and Technology
J.C.J. Bart, E. Gucciardi, …
Hardcover
R6,096
Discovery Miles 60 960
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|