![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
In this book Egyptian Archeology and Mathematics meet. The author is an expert in theories and applications in Solid Mechanics and Inverse Problems, a former professor at Ecole Polytechnique and now works with Electricite de France on maintenance operations on nuclear power plants. In the Autumn of 1986, after the end of the operation on the King's chamber conducted under the Technological and Scientific Sponsorship of EDF, to locate a cavity, he was called to solve a mathematical inverse problem, to find the unknown tomb of the King and the density structure of the whole pyramid based on measurements of microgravity made inside and outside of the pyramid. This book recounts the various search operations on the pyramid of Cheops made at the request of the Egyptian and French authorities in 1986-1987. After the premature end of the Cheops operation in the Autumn of 1986, following the fiasco of unsuccessful drillings in the area suspected by both architects G. Dormion and J.P. Goidin and microgravity auscultation, EDF and CPGF (a geophysical company) teams continued their researches with measurements already made, trying this time an inversion of the Newton gravity equation for the entire pyramid and using another theoretical team led by the author. The inverse problem solution confirmed the results of auscultations, but found no cavity. However, the image of the average density at the surface of the entire pyramid forms a sort of square "spiral" probably related to the construction method. In 2000, Jean-Pierre Houdin considered the author's results of 1988 as a confirmation of his theory of the internal ramp tunnel. Since then the author has done additional research and found that classical theories of the construction based on degrees and the particular mode of stones filling can also report the same densitogram. The book is richly illustrated with color figures. It is dotted with information concerning Physics, Mechanics and the History of Egyptian Antiquities. The book ends with the greatest mystery of the pyramid about the unknown tomb of the King and a dream to see the tomb at an unexpected place.
254 7. 2 AEROSPACE 261 7. 3 MARINE 265 7. 4 GROUND TRANSPORTATION 268 7. 5 CNIL 270 References 285 Index Preface Most structures consist of an assembly of a number of individual components that must be connected to form an integral load transmission path. These connections are often referred to as joints and can be achieved in a variety of forms, e. g. by bolting, riveting, or other forms of mechanical fastening, or by welding or brazing for connecting metallic elements, or by adhesive bonding. No matter what forms of connections are used in the structure, these joints are potentially the weakest points in the structure and the locations where a weight penalty may apply. Thus structural joints must be designed adequately to meet the specific design requirements. Adhesive bonding represents one of the most important enabling technologies for developing innovative design concepts and structural configurations as well as exploiting new materials. The evolution of adhesive bonding technology, and its current knowledge base, was made possibly by the explosive growth in the adhesive applications in a great variety of industries over the past few decades. While it is easy for everyone to identify examples of adhesive bonding in the world around us, analysis and design of structural bonded joints represent one of the most challenging jobs in structural design and manufacturing. Compared to other joining methods, particularly mechanical fastening, adhesive bonding can offer substantial performance and economic advantages.
Have you ever wondered where the safety factors come from? Why is it that deterministic analysis has reached a very sophisticated level, but in the end empirical factors are still needed? Is there a way to select them, rather than assigning them arbitrarily as is often done? This book clearly shows that safety factors are closely related with the reliability of structures, giving yet another demonstration of Albert Einstein's maxim that "It is incomprehensible that Nature is comprehensible." The book shows that the safety factors are much more comprehensible if they are seen in a probabilistic context. Several definitions of the safety factors are given, analytical results on insightful numbers are presented, nonprobabilistic safety factors are shown, as well as their estimates derived by the inequalities of Bienayme, Markov, Chebushev and Camp-Meidell. A special chapter is devoted to important contributions by Japanese experts. This volume will help to critically re-think the issue of safety factors, which can create a false feeling of security. The deterministic paradigm can be enhanced by incorporating probabilistic concepts wisely where they are needed without treating all variables as probabilistic ones. The book shows that there is a need of their integration rather than separation. This book is intended for engineers, graduate students, lecturers and researchers.
This book treats computational modeling of structures in which strong nonlinearities are present. It is therefore a work in mechanics and engineering, although the discussion centers on methods that are considered parts of applied mathematics. The task is to simulate numerically the behavior of a structure under various imposed excitations, forces, and displacements, and then to determine the resulting damage to the structure, and ultimately to optimize it so as to minimize the damage, subject to various constraints. The method used is iterative: at each stage an approximation to the displacements, strains, and stresses throughout the structure is computated and over all times in the interval of interest. This method leads to a general approach for understanding structural models and the necessary approximations.
This book has grown out of lectures and courses given at Linkoeping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying-frequently very many- variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.
Safety and reliability are important for the whole expected service duration of an engineering structure. Therefore, prognostical solutions for different building types are needed and uncertainties have to be handled. Life-cycle strategies to control future structural degradations by concepts of appropriate design have to be developed, in case including means of inspection, maintenance, and repair. Aspects of costs and sustainability also matter. The Cooperative Research Center for Lifetime-Oriented Design Concepts (SFB 398) at Ruhr University in Bochum combines the wide range of scientific topics between structural engineering, structural and soil mechanics and material sciences regarding structural lifetime management in this present extraordinary monolithic format. The characterization and modeling of lifetime-related external actions of multiple origin are presented in this book as well as the physical description, the modeling and the validation of material degradation. Adaptive numerical methods and simulation techniques are provided for the lifetime-oriented design concepts to forecast material and structural degradation. Stochastic aspects, mathematical optimization methods and interactions between various influences are included. Thus, a solid basis is provided for future practical use and also for standardization of structural design with respect to lifetime-prediction.
Nanotechnology is a rapidly evolving field finding newer and newer areas of application that remained unexplored previously. In the area of civil infrastructure systems such as buildings, roads, and bridges, there is a drive towards understanding the behavior of component materials and their interactions at the molecular or nano-level to manipulate and effect macro-level changes to engineer designer or smart materials. Nano-engineering and nano-modification of concrete and bituminous materials have far-reaching implications allowing the development of cost-effective, high-performance, and long-lasting products and processes for civil infrastructure within the ideals of sustainable development. This book focuses on the latest advances made in the development and characterization of nanotechnology based civil engineering materials, structures, and systems. Specific topics discussed in this book include nanoscience modeling to understand the atomic structure of C-S-H, the effect of nanomaterials on cement hydration and reinforcement, multifunctional concrete and Carbon Nanotube (CNT) reinforced cementitious systems, nano-optimized construction materials by nano-seeding, moisture damage characterization of asphalt materials using Atomic Force Microscopy (AFM) and nanoindentation, nanoclay-modified asphalt binder systems, etc.
In this book, experts on textile technologies convey both general and specific information on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete and textile membranes. Readers will also be familiarized with the potential offered by increasingly employed textile structures, for instance in the fields of composite technology, construction technology, security technology and membrane technology.
This volume presents new methodologies for the design of dimension stone based on the concepts of structural design while preserving the excellence of stonemasonry practice in facade engineering. Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements. Based on the Load and Resistance Factor Design Format (LRDF), minimum slab thickness formulae are presented that take into consideration stress concentrations analysis based on the Finite Element Method (FEM) for the most commonly used modern anchorage systems. Calculation examples allow designers to solve several anchorage engineering problems in a detailed and objective manner, underlining the key parameters. The design of the anchorage metal parts, either in stainless steel or aluminum, is also presented.
RILEM TC 248-MMB was established in 2012 with the main aim to improve and distribute knowledge related to moisture measurement in construction materials in various scientific and industrial applications. Properties and performance of building materials and structures are influenced to a large extent by the moisture conditions in the materials. Obvious examples are heat conductivity, shrinkage and creep, transport properties, most types of deterioration, discoloration etc. For research and applications the moisture conditions must be quantified, by measurements in the laboratory or under field conditions. There is much variation in methods being used, even within the same topic, in different countries, both with regard to materials and to applications. No consensus whatsoever does exist. For the construction industry it is important to be able to quantify the moisture conditions in an accurate way in various applications. This state-of-the-art report is divided into two parts, Principles and Applications, with altogether 28 chapters on various moisture measuring principles and a number of applications.
This book contains papers presented at the IUTAM/IACM Symposium Discretization Methods in Structural Mechanics II' held in Vienna, Austria, in June 1997. During the last decade the broad field of Discretization Methods in Structural Mechanics' has experienced a remarkable evolution. New aspects have come into focus. Many of them were stimulated by challenging requirements coming from high-tech applications. In these proceedings such recent developments are presented and discussed together with new trends and demands. In view of their relevance, emphasis was put on nonlinear finite element methods and boundary element methods as well as on the coupling of these two numerical methods. Novel developments in other discretization methods having the potential of opening new avenues for promising applications were also considered. The different sources of nonlinearities, such as large deformations, large strains, nonlinear material behaviour (including viscoplasticity, progressive damage, nonlinearities in composites and other microstructured materials), contact with or without friction, etc., require (a) a careful mathematical and mechanical description and modelling, (b) the development of efficient algorithms and (c) a sound computational treatment. Contributions meeting these requirements are presented. Further emphasis was laid on significant improvements concerning efficiency, accuracy and reliability of discretization methods in nonlinear structural mechanics (e.g. error estimation, self-adapting mesh refinement, multigrid methods). A number of papers deal with new aspects of sensitivity analysis and optimization. Neural network strategies as well as modern data processing architectures(such as parallel computers and transputers) and their impact on the developments of new algorithmic concepts are discussed.
Geologists and civil engineers related to infrastructure planning, design and building describe professional practices and engineering geological methods in different European infrastructure projects.
This book contains the keynote presentations, invited speeches, and general session papers presented at the 2nd International Symposium on Asia Urban GeoEngineering, which will be held from 24 November to 27 November 2017 in Changsha, China. The contents will cover the topics of (i) Fundamental behavior and constitutive model of geomaterials, (ii) Excavation and slope engineering, (iii) Tunnel and underground engineering, (iv) Foundation and foundation treatment, (v) Environmental geotechnical engineering, (vi) Numerical methods in geotechnical engineering. It will provide an opportunity to share knowledge and experiences of the analysis, design, construction, and maintenance of urban geoengineering among engineers, researchers, and professors in Asian countries. It will improve our knowledge of requirements of geoengineering for a long-term sustainable urban development and the need to protect and preserve our environment.
In this book a detailed and systematic treatment of asymptotic methods in the theory of plates and shells is presented. The main features of the book are the basic principles of asymptotics and their applications, traditional approaches such as regular and singular perturbations, as well as new approaches such as the composite equations approach. The book introduces the reader to the field of asymptotic simplification of the problems of the theory of plates and shells and will be useful as a handbook of methods of asymptotic integration. Providing a state-of-the-art review of asymptotic applications, this book will be useful as an introduction to the field for novices as well as a reference book for specialists.
This collection of papers is a state of the art presentation of theories and methods related to the problem of the behaviour of mechanical structures under variable loads beyond their elastic limit In particular, the problems of shakedown, ratchetting, transient and asymptotic cyclic states are addressed. The volume is composed of four chapters devoted to material modelling for cyclic loading conditions; general theory of accommodated states of structures; effects of changes of the geometry on the inelastic structural response; and numerical techniques with applications to particular engineering problems. It was aimed to provide a unified approach in order to understand both inelastic material and structural response under variable loading conditions. The attempt to extend the classical shakedown theory of Melan and Koiter to geometrically non-linear problems is presented in several papers. The industrial application of cyclic plasticity to the analysis and the design of pressure bellows, compensators, turbine disks, or flange connections under thermal and pressure cycles illustrates the great potential of the numerical techniques developed for this purpose using mostly min-max approaches. The treatment of railway problems and the analysis and optimisation of pavements are further examples of important areas of applications. Emphasis was laid on approaches that take into account the fact that loading histories are often not precisely known Therefore, the center of interest lies in other than step by step calculation methods.
"The Fifth Edition of Structural Dynamics: Theory and Computation is the complete and comprehensive text in the field. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this text will serve the practicing engineer as a primary reference. The text differs from the standard approach of other presentations in which topics are ordered by their mathematical complexity. This text is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters, then moves to systems with many degrees-of-freedom in the following chapters. Finally, the text moves to applications of the first chapters and special topics in structural dynamics. New in this Edition: Problems reworked for SAP2000 (R). Step-by-step examples of how to use SAP2000 (R) for every application of structural dynamics. Inclusion of companion Web site (extras.springer.com/2004) with three learning aids: SAP2000 (R) student version; source code for the author's educational programs in structural dynamics, so that the results of changed parameters can be seen step-by-step; and the compiler (executable files) for the author's educational programs. Three earthquake engineering chapters updated to the latest ICC (R) building codes. Materials rearranged so that theory and dynamic analysis precede applications and special topics, facilitating using the book sequentially. Complete instructions provided to advanced topics as foundation for further study. This text is essential for civil engineering students. Professional civil engineers will find it an ideal reference."
This handbook is a collection of elasticity solutions. Many of the results presented here cannot be found in textbooks and are available in scientific articles only. Some of them were obtained in the closed form quite recently. The solutions have been thoroughly checked and reduced to a "user friendly" form. Every effort has been made to keep the book free of misprints. The theory of elasticity is a mature field and a large number of solutions are ava- able. We had to make choices in selecting material for this book. The emphasis is made on results relevant to general solid mechanics and materials science appli- tions. Solutions related to structural mechanics (beams, plates, shells, etc.) are left out. The content is limited to the linear elasticity. We are grateful to B. Nuller for several clarifications concerning the contact pr- lem and to V. Levin for suggestions on Eshelby's problem. We also appreciate a n- ber of remarks and comments made by L. Germanovich, I. Sevostianov, O. Zharii and R. Zimmerman. We are particularly indebted to E. Karapetian for a substantial help in putting the material together.
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Fryba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
This book is intended for classroom teaching in architectural and civil engineering at the graduate and undergraduate levels. Although it has been developed from lecture notes given in structural steel design, it can be useful to practicing engineers. Many of the examples presented in this book are drawn from the field of design of structures. Design of Steel Structures can be used for one or two semesters of three hours each on the undergraduate level. For a two-semester curriculum, Chapters 1 through 8 can be used during the first semester. Heavy emphasis should be placed on Chapters 1 through 5, giving the student a brief exposure to the consideration of wind and earthquakes in the design of buildings. With the new federal requirements vis a vis wind and earthquake hazards, it is beneficial to the student to have some under standing of the underlying concepts in this field. In addition to the class lectures, the instructor should require the student to submit a term project that includes the complete structural design of a multi-story building using standard design procedures as specified by AISC Specifications. Thus, the use of the AISC Steel Construction Manual is a must in teaching this course. In the second semester, Chapters 9 through 13 should be covered. At the undergraduate level, Chapters 11 through 13 should be used on a limited basis, leaving the student more time to concentrate on composite construction and built-up girders."
Evaluation, repair and rehabilitation of bridges are increasingly important topics in the effort to deal with the deteriorating infrastructure. For example, in the United States about 40 percent of the nation's 570,000 bridges are classified, according to the Federal Highway Administra tion's (FHW A) criteria, as deficient and in need of rehabilitation and replacement. In other countries the situation is similar. FHW A estimates the cost of a bridge replacement and reha bilitation program at 50 billion dollars. The major factors that have contributed to the present situation are: the age, inadequate maintenance, increasing load spectra and environmental contamination. The deficient bridges are posted, repaired or replaced. The disposition of bridges involves clear economical and safety implications. To avoid high costs of replacement or repair, the evaluation must accurately reveal the present load carrying capacity of the struc ture and predict loads and any further changes in the capacity (deterioration) in the applicable time span. Accuracy of bridge evaluation can be improved by using the recent developments in bridge diagnostics, structural tests, material tests, structural analysis and probabilistic methods. There is a need for an international exchange of advanced experience to increase the research effi ciency. The Workshop is organized on the premise that the exchange of existing American and European experience in the area of bridge evaluation, repair and rehabilitation is beneficial for both parties involved."
This extensively revised and updated fourth edition provides engineers with the principles and tools needed to turn their familiarity with earlier ACI Codes into more profitable, time-saving routine designs. Created to be used with the ACI Code and Commentary, this outstanding guide follows the new Code format with information covered in more specific sections and subsections in order to enhance clarity. In addition, it shortens the time needed for computer-aided design and analysis, converts code formulas from the review form to direct design, and presents simple formulas, tabulations, and charts for conservative longhand direct design. Two convenient indices - a subject index and a 1995 Code section index - are provided, enabling engineers to quickly locate all Code references to a particular topic, as well as concise interpretation of a given Code section. The Guide also saves engineers time and effort on the job with its detailed coverage of: torsional stiffness, braced and unbraced slender columns with and without sidesway, wide-module joist systems, reinforcement details for economy in design, detailing, fabricating, field erection, and inspection, latest ASTM material specifications, anchorage, development, and splice requirements, high-strength concrete, comparisons between wall and column economy, structural plain concrete. More than ever, the sure-handed Structural Design Guide to the ACI Building Code is an indispensable practical reference for structural, civil, and architectural engineers and students who want to safely meet modern building requirements while taking full advantage of every economy permitted by the 1995 ACI Code.
This book provides an in-depth background to better understanding
of finite element results and techniques for improving accuracy of
finite element methods. Thus, the reader is able to identify and
eliminate errors contained in finite element models. Three
different error analysis techniques are systematically developed
from a common theoretical foundation: 1) modeling erros in
individual elements; 2) discretization errors in the overall model;
3) point-wise errors in the final stress or strain results. * New, simpler element formulation techniques, model-independent
results, and error measures
This book is not intended to be a text-book, delineating the full scope of finite element methodology, nor is it a comprehensive handbook of modern finite element practice for the finite element engineer. There are enough books that serve to do these and more. It is however intended as a monograph or treatise on a very specific area - the design of robust and accurate elements for applications in struc tural mechanics. It attempts to describe the epistemological conflict between the principles in finite element technology that can be described as Art and those that have a scientific basis invested in it and which can be admitted as science as the subject evolved and came to be accepted. The principles of structural mechanics as a branch of physics are well founded and have a sound scientific basis. The mathematical description of it has also a long history and is rigorously based on the infinitesimal and variational calculus. Of much more recent origin has been the branch of knowledge dealing with the numerical modelling of the beha viour of structural material. The most powerful method available to do this today is the finite element method. It is eminently suited to carry out the entire cycle of design and analysis of a structural configuration on a digital computer."
This volume covers the computational dynamics of linear and
non-linear engineering systems subject to conservative as well as
non-conservative loads. Available in both paperback and hardback,
the volume proposes an as simple as possible numerical evaluation
of dynamic phenomena. |
![]() ![]() You may like...
Armco Iron Rust-resisting Products.
American Rolling Mill Company
Hardcover
R789
Discovery Miles 7 890
Reinforced Concrete Construction in…
Henry 1846-1935 Adams, Ernest Romney 1873-1930 Matthews
Hardcover
R906
Discovery Miles 9 060
Circular Economy - Assessment and Case…
Subramanian Senthilkannan Muthu
Hardcover
R3,376
Discovery Miles 33 760
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,549
Discovery Miles 35 490
Structural Integrity and Failure
Resat Oyguc, Faham Tahmasebinia
Hardcover
R3,329
Discovery Miles 33 290
|