![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
"Advanced Piping Design" is an intermediate-level handbook covering guidelines and procedures on process plants and interconnecting piping systems. As a follow up with Smith s best-selling work published in 2007 by Gulf Publishing Company, "The Fundamentals of Piping Design," this handbook contributes more customized information on the necessary process equipment required for a suitable plant layout, such as pumps, compressors, heat exchangers, tanks, cooling towers and more While integrating equipment with all critical design considerations, these two volumes together are must-haves for any engineer continuing to learn about piping design and process equipment."
This book comprises select proceedings of the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2020). The book focuses on the latest research developments in structural engineering, structural health monitoring, rehabilitation and retrofitting of structures, geotechnical engineering, and earthquake-resistant structures. The contents also cover the latest innovations in building repair and maintenance, and sustainable materials for rehabilitation and retrofitting. The contents of this book are useful for students, researchers, and professionals working in structural engineering and allied areas.
David Gould's acclaimed first book, Complete Maya Programming: An
Extensive Guide to MEL and the C++ API, provides artists and
programmers with a deep understanding of the way Maya works and how
it can be enhanced and customized through programming. In his new
book David offers a gentle, intuitive introduction to the core
ideas of computer graphics.
This book contains selected papers in the area of structural engineering from the proceedings of the conference, Futuristic Approaches in Civil Engineering (FACE) 2019. In the area of construction materials, the book covers high quality research papers on raw materials and manufacture of cement, mixing, rheology and hydration, admixtures, characterization techniques and modeling, fiber-reinforced concrete, repair and retrofitting of concrete structures, novel testing techniques such as digital image correlation (DIC). Research on sustainable building materials like Geopolymer concrete and recycled aggregates are covered. In the area of earthquake engineering, papers related to the seismic response of load-bearing unreinforced masonry walls, reinforced concrete frame and buildings with dampers are covered. Additionally, there are chapters on structures subjected to vehicular impact and fire. The contents of this book will be useful for graduate students, researchers and practitioners working in the areas of concrete, earthquake and structural engineering.
This book brings together a comprehensive and up-to-date presentation of the main scientific and technological aspects of limestone mining. The book discusses how to excavate limestone from surface mines including the nuances of production and commercial aspects.It addresses topical issues related with the quarrying of limestone and environmental protection measures adopted in mining and manufacturing. The chapters in this book describe planning and designing of mining processes to produce limestone that meets with market requirements and customer specifications. The book also discusses the environmental stresses caused by mining as an industrial activity and their ramifications and remedies. The book includes case studies from different geo-mining environments. The contents of this book will be useful to professionals, researchers, and policy makers alike.
Structural vibrations have become the critical factor limiting the performance of many engineering systems, typical amplitudes ranging from meters to a few nanometers. Many acoustic nuisances in transportation systems and residential and office buildings are also related to structural vibrations. The active control of such vibrations involves nine orders of magnitude of vibration amplitude, which exerts a profound influence on the technology. Active vibration control is highly multidisciplinary, involving structural vibration, acoustics, signal processing, materials science, and actuator and sensor technology. Chapters 1-3 of this book provide a state-of-the-art introduction to active vibration control, active sound control, and active vibroacoustic control, respectively. Chapter 4 discusses actuator/sensor placement, Chapter 5 deals with robust control of vibrating structures, Chapter 6 discusses finite element modelling of piezoelectric continua and Chapter 7 addresses the latest trends in piezoelectric multiple-degree-of-freedom actuators/sensors. Chapters 8-12 deal with example applications, including semi-active joints, active isolation and health monitoring. Chapter 13 addresses MEMS technology, while Chapter 14 discusses the design of power amplifiers for piezoelectric actuators.
Handbook of Energy Efficiency in Buildings: A Life Cycle Approach offers a comprehensive and in-depth coverage of the subject with a further focus on the Life Cycle. The editors, renowned academics, invited a diverse group of researchers to develop original chapters for the book and managed to well integrate all contributions in a consistent volume. Sections cover the role of the building sector on energy consumption and greenhouse gas emissions, international technical standards, laws and regulations, building energy efficiency and zero energy consumption buildings, the life cycle assessment of buildings, from construction to decommissioning, and other timely topics. The multidisciplinary approach to the subject makes it valuable for researchers and industry based Civil, Construction, and Architectural Engineers. Researchers in related fields as built environment, energy and sustainability at an urban scale will also benefit from the books integrated perspective.
This book comprises select and peer-reviewed proceedings of the International Conference on Recent Trends in Construction Materials and Structures (ICON 2019). The contents cover various latest developments and emerging technologies in sustainable construction materials, utilization of waste materials in concrete, special concrete, maintenance of heritage structures, earthquake engineering, and structural dynamics. The book also provides effective and feasible solutions to current problems in sustainable construction materials and structures. This book is useful for students, researchers, and industry professionals interested in concrete technology and structures.
For junior/senior-level courses in Systems Analysis or Systems Analysis and Economics as applied to civil engineering. With a reorganization and new material, the Second Edition of this acclaimed text is designed to enhance the student's learning experience by providing exposure to modeling ideas and concepts. Network flow problems are emphasized by highlighting their study separately from the general integer programming models that are considered. With a wider range of examples and exercises that conclude many chapters, this text offers students an extremely practical, accessible study on the most modern skills available for the design, operation and evaluation of civil and environmental engineering systems.
For undergraduate/graduate-level foundation engineering courses. Covers the subject matter thoroughly and systematically, while being easy to read. Emphasizes a thorough understanding of concepts and terms before proceeding with analysis and design, and carefully integrates the principles of foundation engineering with their application to practical design problems.
This book gathers selected papers from the International Conference on Sustainable Design, Engineering, Management and Sciences (ICSDEMS 2019), held in Kuala Lumpur, Malaysia. It highlights recent advances in civil engineering and sustainability, bringing together researchers and professionals to address the latest, most relevant issues in these areas.
Advanced Mechanics of Composite Materials and Structures analyzes contemporary theoretical models at the micro- and macro levels of material structure. Its coverage of practical methods and approaches, experimental results, and optimization of composite material properties and structural component performance can be put to practical use by researchers and engineers. The fourth edition has been updated to reflect new manufacturing processes (such as 3D printing of two matrix composite structural elements) and new theories developed by the authors. The authors have expanded the content of advanced topic areas with new chapters on axisymmetric deformation of composite shells of revolution, composite pressure vessels, and anisogrid composite lattice structures. This revision includes enhanced sections on optimal design of laminated plates and additional examples of the finite element modelling of composite structures and numerical methods. Advanced Mechanics of Composite Materials and Structures, Fourth edition is unique in that it addresses a wide range of advanced problems in the mechanics of composite materials, such as the physical statistical aspects of fiber strength, stress diffusion in composites with damaged fibers, nonlinear elasticity, and composite pressure vessels to name a few. It also provides the foundation for traditional basic composite material mechanics, making it one of the most comprehensive references on this topic.
This book focuses on the qualitative theory in structural mechanics, an area that remains underdeveloped. The qualitative theory mainly deals with the static deformation and vibrational modes of linear elastic structures, and cover subjects such as qualitative properties and the existence of solutions. Qualitative properties belong to one type of structure, are at the system level and of clear regularity, and often result from analytical derivation and logical reasoning. As for the existence of solutions, it addresses a fundamental issue in structural mechanics, and has far-reaching implications for engineering applications. A better understanding of qualitative properties can assist in both numerical computation and experimental studies. It also promotes the development of better dynamic designs for structures. At the same time, a sound grasp of the existence of solutions and related subjects can aid in quantitative analysis, and help researchers establish the theoretical background essential to their work. This book is among the few that is dedicated exclusively to the qualitative theory in structural mechanics and systematically introduces the important and challenging area to a wide audience, including graduate students in engineering.
This book discusses how to identify the level of adhesion in layered systems made of cement composites using a multi-scale approach based on experimental and numerical analyses. In particular, it explains 1. The suitability of previously used artificial intelligence tools and learning algorithms for reliable assessment of the level of adhesion of layered systems made of cement composites based on non-destructive tests 2. The development of the methodology for a reliable non-destructive evaluation of the level of adhesion in newly constructed layered systems of any overlay thickness and in existing layered systems made of cement composites 3. How to determine whether to assess the level of adhesion of the layered systems, and discusses the amplitude parameters, spatial, hybrid and volume parameters describing the morphology of the concrete substrate surface in the mesoscale 4. How to ascertain whether the effective surface area of the existing concrete substrate and the contribution of the exposed aggregate on this substrate, determined in mesoscale, have an impact on the level of adhesion of layered systems made of cement composites 5. The assessment of the structure of air pores in the microscale and the chemical composition of the cement composite on the nanoscale in the interphase zone together with the determination of their impact on the level of adhesion of layered systems made of cement composites 6. The development of an effective methodology for testing the level of adhesion of layered systems made of cement composites in a multi-scale approach, including the research methods and descriptors used.
This book presents simplified analytical methodologies for static and dynamic problems concerning various elastic thin plates in the bending state and the potential effects of dead loads on static and dynamic behaviors. The plates considered vary in terms of the plane (e.g. rectangular or circular plane), stiffness of bending, transverse shear and mass. The representative examples include void slabs, plates stiffened with beams, stepped thickness plates, cellular plates and floating plates, in addition to normal plates. The closed-form approximate solutions are presented in connection with a groundbreaking methodology that can easily accommodate discontinuous variations in stiffness and mass with continuous function as for a distribution. The closed-form solutions can be used to determine the size of structural members in the preliminary design stages, and to predict potential problems with building slabs intended for human beings' practical use.
Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers presents current techniques and technologies for energy efficiency in buildings. Cases introduce and demonstrate applications in both the design of new buildings and retrofit of existing structures. The book begins with an introduction that includes energy consumption statistics, building energy efficiency codes, and standards and labels from around the world. It then highlights the need for integrated and comprehensive energy analysis approaches. Subsequent sections present an overview of advanced energy efficiency technologies for buildings, including dynamic insulation materials, phase change materials, LED lighting and daylight controls, Life Cycle Analysis, and more. This book provides researchers and professionals with a coherent set of tools and techniques for enhancing energy efficiency in new and existing buildings. The case studies presented help practitioners implement the techniques and technologies in their own projects.
The design of tall buildings and complex structures involves challenging activities, including: scheme design, modelling, structural analysis and detailed design. This book provides structural designers with a systematic approach to anticipate and solve issues for tall buildings and complex structures. This book begins with a clear and rigorous exposition of theories behind designing tall buildings. After this is an explanation of basic issues encountered in the design process. This is followed by chapters concerning the design and analysis of tall building with different lateral stability systems, such as MRF, shear wall, core, outrigger, bracing, tube system, diagrid system and mega frame. The final three chapters explain the design principles and analysis methods for complex and special structures. With this book, researchers and designers will find a valuable reference on topics such as tall building systems, structure with complex geometry, Tensegrity structures, membrane structures and offshore structures.
Corrosion and its Consequences for Reinforced Concrete Structures serves as an indispensable guide for engineers, scientists and researchers, exploring the fundamental aspects of corrosion in reinforced concrete. Its originality lies in the coupling between the reinforcement corrosion of reinforced concrete and its mechanical behavior.The authors describe the specific theoretical foundations of the corrosion of steel in concrete and its interactions with the structural aspects, including service cracking and defects in the placement of concrete. The book contains a study of the mechanisms of degradation of the mechanical behavior of reinforcements and the reinforced concrete composite, such as reduction of ductility, bearing capacity, redistribution of efforts by formation of plastic hinges and increase in the beam deflection in service. A diagnostic method based on corrosion-induced crack detection is presented in the book, and then paired with a recalculation method which allows us to predict the different aspects of the residual mechanical behavior. Several end-of-life ELS and ELU criteria are described, and the authors propose an approach to estimate the residual lifetime. Finally, the book presents the cathodic protection that allows the progression of corrosion to be contained within the corroded structures. As well as academics, this book is aimed at civil engineers who are faced with the issue of corrosion in aging structures.
Preface. The Interaction of Wear and Rolling Contact Fatigue; J.H. Beynon, A. Kapoor. Reliability Assessment of Randomly Loaded Critical Components; M. Bily. Fitness for Purpose Assessment of Structural Integrity; J.G. Blauel. Part-Through Cracked Structures Under Cyclic Loading; A. Carpinteri, et al. Multiaxial Fatigue Life Prediction Methods for Engineering Components; T.D. Liebster, G. Glinka. Assessment of Fatigue in High-Duty Engineering Components; J.F. Knott. Material Characterization Required for the Reliability Assessment of Cyclically Loaded Engineering Structures: Part 1: Fatigue and Failure of Materials; A.J. Krasowsky, L. Toth. Non-Linear Deformation and Fatigue Fracture in Engineering Design; N.A. Makhutov, M.M. Gadenin. Gaseous Atmosphere Influence on Fatigue Crack Propagation; J. Petit, et al. Crack Propagation of Semi-Elliptical Surface Cracks: A Literature Review; T. Boukharouba, et al. Fatigue of Ceramics and Intermetallics: Application to Damage Tolerance and Life Prediction in Cyclically-Loaded Brittle Materials; R. Ritchie, et al. Fatigue Problems in Transport Applications; R.A. Smith. High Nitrogen Steels Behaviour Under cyclic Loading; S. Vodenicharov. Energy-Based Approach to Damage Cumulation in Random Fatigue; T. Lagoda, E. Macha. Application of a Probabilistic Approach of Durability Analysis to Gust Loaded Structures and Some Possible Extensions; A. Pieracci.
The book contains the proceedings of CAETS 2015 Convocation on 'Pathways to Sustainability: Energy, Mobility and Healthcare Engineering' that was held on October 13-14, 2015 in New Delhi. This 3 volume proceedings provide an international forum for discussion and communication of engineering and technological issues of common concern. This volume talks about 'Mobility' and includes 14 chapters on diverse topics like creating sustainable transportation systems, mobility of the future, unique engineering features like Delhi metro, digitally re-imagining mobility, trends and future strategies of transportation electrification, etc. The contents of this book will be useful to researchers, professionals, and policy makers alike.
This book gathers peer-reviewed contributions presented at the 3rd National Conference on Structural Engineering and Construction Management (SECON'19), held in Angamaly, Kerala, India, on 15-16 May 2019. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Modelling, Solving and Applications for Topology Optimization of Continuum Structures: ICM Method Based on Step Function provides an introduction to the history of structural optimization, along with a summary of the existing state-of-the-art research on topology optimization of continuum structures. It systematically introduces basic concepts and principles of ICM method, also including modeling and solutions to complex engineering problems with different constraints and boundary conditions. The book features many numerical examples that are solved by the ICM method, helping researchers and engineers solve their own problems on topology optimization. This valuable reference is ideal for researchers in structural optimization design, teachers and students in colleges and universities working, and majoring in, related engineering fields, and structural engineers.
Structural Resilience in Sewer Reconstruction: From Theory to Practice provides engineers with a balanced mixture of theory and practice. Divided into three parts, structural resilience is introduced, along with different methods and theories that are needed to assess sewerage networks. The authors begin with a general overview of resilience and lessons learned, then present a comprehensive review of resilience theories in key fields of study. The book also introduces major analysis techniques and computational methods for resilience assessment, also highlighting sewer reconstruction projects carried out in Tokyo, including the reconstruction and development process for construction methods, renovation materials and technical inventions. The structural resilience considerations incorporated in various stages of development are discussed in detail. Computational examples for assessing structural resilience in the renovated sewer system in Tokyo are also shown, with final chapters summarizing structural resilience theories and areas for future study. |
![]() ![]() You may like...
Reinforced Concrete Construction in…
Henry 1846-1935 Adams, Ernest Romney 1873-1930 Matthews
Hardcover
R941
Discovery Miles 9 410
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,401
Discovery Miles 54 010
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,750
Discovery Miles 27 500
|