![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This text contains contributions from various authors on topics related to probabilistic methods used for the design of structures. Several of the papers were initially prepared for advanced courses on structural reliability or on probabilistic methods for structural design. These courses have been held in several countries and have been given by various groups of lecturers. They were aimed at engineers and researchers that had already been exposed to structural reliability methods, and presented overviews of the various topics. The book includes a selection of these contributions, which should be of use to future courses or for engineers and researchers who want an up-to-date overview. It is complementary to the existing textbooks on structural reliability, which normally cover the basic topics but exclude the more specialized aspects. In addition, several papers have been specially prepared for this book, complementing the others in providing an overall account of recent advances in the field. Among the topics covered are modelling of uncertainty, prediction of the strength of components, load modelling and combination, assessment of structural systems, stochastic finite elements and design consideration. This volume is directed at practitioners as well as researchers.
This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.
This manual provides the reader with an accurate and convenient method for estimatig direct labor for general contrsuction work for any given system, plant, or location. Though this book, the reader has a reliable process of obtaining and streamlining an efficent model of operation.
Research into and design of deployable structures requires the combination of many skills including knowledge of traditional mathematics, understanding of nonlinear structural behavior, use of modern numerical methods of simulation, and a great deal of engineering ingenuity. Accessible to practicing structural engineers and graduate students with no previous knowledge of the field, this title formulates and solves the complex engineering design problems with which deployable structures are associated. It also presents the issue of design of snap-through type deployable structures in an organized way which will be of interest to more experienced readers. Up-to-date practice and recent research results are highlighted throughout.
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installation processes is a very challenging task. Some hints about possible effects and their consideration are given in this book which may provide a help for such estimations which are still not possible to be given in a satisfactory manner.
The successful design and construction of iconic new buildings relies on a range of advanced technologies, in particular on advanced modelling techniques. In response to the increasingly complex buildings demanded by clients and architects, structural engineers have developed a range of sophisticated modelling software to carry out the necessary structural analysis and design work. Advanced Modelling Techniques in Structural Design introduces numerical analysis methods to both students and design practitioners. It illustrates the modelling techniques used to solve structural design problems, covering most of the issues that an engineer might face, including lateral stability design of tall buildings; earthquake; progressive collapse; fire, blast and vibration analysis; non-linear geometric analysis and buckling analysis . Resolution of these design problems are demonstrated using a range of prestigious projects around the world, including the Buji Khalifa; Willis Towers; Taipei 101; the Gherkin; Millennium Bridge; Millau viaduct and the Forth Bridge, illustrating the practical steps required to begin a modelling exercise and showing how to select appropriate software tools to address specific design problems.
The Finite Element Method, shortly FEM, is a widely used computational tool in structural engineering. For basic design purposes it usually suf ces to apply a linear-elastic analysis. Only for special structures and for forensic investigations the analyst need to apply more advanced features like plasticity and cracking to account for material nonlinearities, or nonlinear relations between strains and displacements for geometrical nonlinearity to account for buckling. Advanced analysis techniques may also be necessary if we have to judge the remaining structural capacity of aging structures. In this book we will abstain from such special cases and focus on everyday jobs. Our goal is the worldwide everyday use of linear-elastic analysis, and dimensioning on basis of these elastic computations. We cover steel and concrete structures, though attention to structural concrete prevails. Structural engineers have access to powerful FEM packages and apply them intensively. Experience makes clear that often they do not understand the software that they are using. This book aims to be a bridge between the software world and structural engineering. Many problems are related to the correct input data and the proper interpretation and handling of output. The book is neither a text on the Finite Element Method, nor a user manual for the software packages. Rather it aims to be a guide to understanding and handling the results gained by such software. We purposely restrict ourselves to structure types which frequently occur in practise.
This book describes concepts, methods and practical techniques for managing projects to develop constructed facilities in the fields of oil & gas, power, infrastructure, architecture and the commercial building industries. It is addressed to a broad range of professionals willing to improve their management skills and designed to help newcomers to the engineering and construction industry understand how to apply project management to field practice. Also, it makes project management disciplines accessible to experts in technical areas of engineering and construction. In education, this text is suitable for undergraduate and graduate classes in architecture, engineering and construction management, as well as for specialist and professional courses in project management.
The recent earthquake disasters in Japan and a series of other
disasters in the world have highlighted again the need for more
reliable geotechnical prediction and better methods for
geotechnical design and in particular dealing with geohazards. This
book provides a timely review and summaries of the recent advances
in theories, analyses and methods for geotechnical predictions and
the most up-to-date practices in geotechnical engineering and
particularly in dealing with geohazards. A special section on the
geotechnical aspects of the recent Tohoku earthquake disaster in
Japan is also presented in this book.
The increased level of activity on structural health monitoring (SHM) in various universities and research labs has resulted in the development of new methodologies for both identifying the existing damage in structures and predicting the onset of damage that may occur during service. Designers often have to consult a variety of textbooks, journal papers and reports, because many of these methodologies require advanced knowledge of mechanics, dynamics, wave propagation, and material science. Computational Techniques for Structural Health Monitoring gives a one-volume, in-depth introduction to the different computational methodologies available for rapid detection of flaws in structures. Techniques, algorithms and results are presented in a way that allows their direct application. A number of case studies are included to highlight further the practical aspects of the selected topics. Computational Techniques for Structural Health Monitoring also provides the reader with numerical simulation tools that are essential to the development of novel algorithms for the interpretation of experimental measurements, and for the identification of damage and its characterization. Upon reading Computational Techniques for Structural Health Monitoring, graduate students will be able to begin research-level work in the area of structural health monitoring. The level of detail in the description of formulation and implementation also allows engineers to apply the concepts directly in their research.
Premature cracking in asphalt pavements and overlays continues to shorten pavement lifecycles and creates significant economic and environmental burden. In response, RILEM Technical Committee TC 241-MCD on Mechanisms of Cracking and Debonding in Asphalt and Composite Pavements has conducted a State-of-the-Art Review (STAR), as detailed in this comprehensive book. Cutting-edge research performed by RILEM members and their international partners is presented, along with summaries of open research questions and recommendations for future research. This book is organized according to the theme areas of TC 241-MCD - i.e., fracture in the asphalt bulk material, interface debonding behaviour, and advanced measurement systems. This STAR is expected to serve as a long term reference for researchers and practitioners, as it contributes to a deeper fundamental understanding of the mechanisms behind cracking and debonding in asphalt concrete and composite pavement systems.
This book examines in detail the entire process involved in implementing geotechnical projects, from a well-defined initial stress and deformation state, to the completion of the installation process. The individual chapters provide the fundamental knowledge needed to effectively improve soil-structure interaction models. Further, they present the results of theoretical fundamental research on suitable constitutive models, contact formulations, and efficient numerical implementations and algorithms. Applications of fundamental research on boundary value problems are also considered in order to improve the implementation of the theoretical models developed. Subsequent chapters highlight parametric studies of the respective geotechnical installation process, as well as elementary and large-scale model tests under well-defined conditions, in order to identify the most essential parameters for optimizing the process. The book provides suitable methods for simulating boundary value problems in connection with geotechnical installation processes, offering reliable predictions for the deformation behavior of structures in static contexts or dynamic interaction with the soil.
The Discrete Element Method (DEM) has emerged as a solution to predicting load capacities of masonry structures. As one of many numerical methods and computational solutions being applied to evaluate masonry structures, further research on DEM tools and methodologies is essential for further advancement. Computational Modeling of Masonry Structures Using the Discrete Element Method explores the latest digital solutions for the analysis and modeling of brick, stone, concrete, granite, limestone, and glass block structures. Focusing on critical research on mathematical and computational methods for masonry analysis, this publication is a pivotal reference source for scholars, engineers, consultants, and graduate-level engineering students.
This book presents and applies a novel efficient meta-heuristic optimization algorithm called Colliding Bodies Optimization (CBO) for various optimization problems. The first part of the book introduces the concepts and methods involved, while the second is devoted to the applications. Though optimal design of structures is the main topic, two chapters on optimal analysis and applications in constructional management are also included. This algorithm is based on one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass. After a collision of two moving bodies with specified masses and velocities, these bodies again separate, with new velocities. This collision causes the agents to move toward better positions in the search space. The main algorithm (CBO) is internally parameter independent, setting it apart from previously developed meta-heuristics. This algorithm is enhanced (ECBO) for more efficient applications in the optimal design of structures. The algorithms are implemented in standard computer programming languages (MATLAB and C++) and two main codes are provided for ease of use.
This straightforward text, primer and reference introduces the
theoretical, testing and control aspects of structural dynamics and
vibration, as practised in industry today.
All objects and structures transfer their load either directly or
indirectly to the earth. The capacity of the earth to support such
loads depends on the strength and stability of the supporting soil
or rock materials. Pile foundations are the part of a structure
used to carry and transfer the load of the structure to the bearing
ground located at some depth below ground surface. There are many
texts on pile foundations. Generally, these books are complicated
and difficult to understand. Easy to use and understand, this book
covers virtually every subject concerning pile design, featuring
techniques that do not appear in other books on the subject. The
book contains design methods with real life examples on pin piles,
bater piles, concrete piles, steel piles, timber piles, auger cast
piles, underpinning design, seismic pile design, negative skin
friction and design of Bitumen coated piles for negative skin
friction and many other subjects. The book is packed with design
examples, case studies and after construction scenarios are
presented for the reader's benefits. This book enables the reader
to come away with a complete and comprehensive understanding of the
issues related to the design, installation and construction of
piles.
This book provides a solid introduction to the foundation and the application of the finite element method in structural analysis. It offers new theoretical insight and practical advice. This second edition contains additional sections on sensitivity analysis, on retrofitting structures, on the Generalized FEM (X-FEM) and on model adaptivity. An additional chapter treats the boundary element method, and related software is available at www.winfem.de.
The ICAMEST 2015 Conference covered new developments in advanced materials and engineering structural technology. Applications in civil, mechanical, industrial and material science are covered in this book. Providing high-quality, scholarly research, addressing developments, applications and implications in the field of structural health monitoring, construction safety and management, sensors and measurements. This volume contains new models for nonlinear structural analysis and applications of modeling identification. Furthermore, advanced chemical materials are discussed with applications in mechanical and civil engineering and for the maintenance of new materials. In addition, a new system of pressure regulating and water conveyance based on small and middle hydropower stations is discussed. An experimental investigation of the ultimate strength and behavior of the three types of steel tubular K-joints was presented. Furthermore, real-time and frequency linear and nonlinear modeling performance of materials of structures contents were concluded with the notion of a fully brittle material, and this approach is implemented in the book by outlining a finite-element method for the prediction of the construction performance and cracking patterns of arbitrary structural concrete forms. This book is an ideal reference for practicing engineers in material, mechanical and civil engineering and consultants (design, construction, maintenance), and can also be used as a reference for students in mechanical and civil engineering courses.
Updated edition of a best-selling title
"Theory of Arched Structures: Strength, Stability, Vibration"
presents detailed procedures for analytical analysis of the
strength, stability, and vibration of arched structures of
different types, using exact analytical methods of classical
structural analysis. |
You may like...
Windows 11 - The Good, The Bad & The…
Ojula Technology Innovations
Paperback
R486
Discovery Miles 4 860
Theory Of Spinors: An Introduction
Moshe Carmeli, Shimon Malin
Hardcover
R1,539
Discovery Miles 15 390
|