Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
The 8th International Conference on Physical Modelling in Geotechnics (ICPMG2014) was organised by the Centre for Offshore Foundation Systems at the University of Western Australia under the auspices of the Technical Committee 104 for Physical Modelling in Geotechnics of the International Society of Soil Mechanics and Geotechnical Engineering. This quadrennial conference is the traditional focal point for the physical modelling community of academics, scientists and engineers to present and exchange the latest developments on a wide range of physical modelling aspects associated with geotechnical engineering. These proceedings, together with the seven previous proceedings dating from 1988, present an inestimable collection of the technical and scientific developments and breakthroughs established over the last 25 years. These proceedings include 10 keynote lectures from scientific leaders within the physical modelling community and 160 peer-reviewed papers from 26 countries. They are organised in 14 themes, presenting the latest developments in physical modelling technology, modelling techniques and sensors, through a wide range of soil-structure interaction problems, including shallow and deep foundations, offshore geotechnics, dams and embankments, excavations and retaining structures and slope stability. Fundamental aspects of earthquake engineering, geohazards, ground reinforcements and improvements, and soil properties and behaviour are also covered, demonstrating the increasing complexity of modelling arising from state-of-the-art technological developments and increased understanding of similitude principles. A special theme on education presents the latest developments in the use of physical modelling techniques for instructing undergraduate and postgraduate students in geotechnical engineering.
Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers:
Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering."
'Baltic Piling' contains the proceedings of the Baltic Piling Days 2012 (Tallinn, Estonia, 3-5 September 2012). The book includes contributions on current issues in pile foundation engineering: - Interaction of pile and grillage; - Formation of pile bearing capacity - Settlements of piles - Pile foundation under historical buildings - Thermopiles, and - Interaction of georgid and pile. 'Baltic Piling' will be of interest to engineers, academics and students interested in pile foundation engineering and related disciplines.
: Conservation of monuments and historic sites is one of the most challenging problems facing modern civilization. It involves various cultural, humanistic, social, technical, economical and administrative factors, intertwining in inextricable patterns. The complexity of the topic is such that guidelines or recommendations for intervention techniques and design approaches are difficult to set. The Technical Committee on the Preservation of Monuments and Historic Sites (named TC19) was established by the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) in 1981, is supported by the Italian Geotechnical Society (AGI), and renamed TC301 in 2010. Geotechnics and Heritage, collects relevant case histories on the role of geotechnical engineering in the preservation of monuments and historic sites, and is an addition to the Proceedings of the two International Symposia organized by the Committee in Napoli in 1994 and 2013. The contributions in the book proof the significant role geotechnical engineering plays in conservation of historic building and monuments.
All the traces of historic heritage are a fundamental part of our environment and reward us in the form of cultural enrichment, with the ability to have a positive effect both on our lifestyle and economy. Therefore, the preservation of ancient monuments, historic towns and sites has increasingly drawn the attention of public opinion, governmental agencies as well as consultants and contractors. This interest must be however carefully controlled and directed, since the conservation of monuments and historic sites is one of the most challenging problems of our age. Careless attempts at preservation can be detrimental not only to their iconic value (formal integrity), but even to their structural characteristics and the materials they are built with (material integrity). Geotechnical Engineering for the Preservation of Monuments and Historic Sites collects one opening address, four special lectures and 82 contributions from all over the world, giving a unique sample of the geotechnical problems to be tackled, the solutions currently being proposed, and the strategies being carried out to preserve the overall integrity of monuments and historic sites. It is clearly apparent that differences exist around the world not only in terms of the characteristics of the monuments or sites to be preserved, but also in the approaches adopted to achieve this aim. Hence, no unique solution is available to the geotechnical engineer dealing with the delicate structures and sites that represent our cultural heritage, and knowledge of previous experiences may be a unique guide in any technical decision-making process.
Tunnelling in Rock by Drilling and Blasting presents the latest developments in the excavation of tunnels using the drilling and blasting method. Examples of work conducted throughout the world including the Indian sub-continent, Australia, and Sweden amongst others are discussed. These tunnel projects serve to illustrate the challenges and importance of drilling accuracy, the effect of geology, methods of vibration prediction and control, and techniques for assessing tunnel performance in terms of overbreak and underbreak, advance and rock mass damage. A number of case studies demonstrate the ingenuity required to successfully excavate tunnels in demanding circumstances. Finally, an overview is provided of the software tools and IT, and the explosives and initiation products used to implement tunnel blast designs. Tunnelling in Rock by Drilling and Blasting is the outcome of the workshop, Tunnelling in Rock by Drilling and Blasting, hosted by the 10th International Symposium on Rock Fragmentation by Blasting (Fragblast 10, November 2010, New Delhi, India), and is essential reading for researchers and practitioners in tunnelling in rock by drilling and blasting.
Advances in Civil Engineering and Building Materials presents the state-of-the-art development in: - Structural Engineering - Road & Bridge Engineering - Geotechnical Engineering - Architecture & Urban Planning - Transportation Engineering - Hydraulic Engineering - Engineering Management - Computational Mechanics - Construction Technology - Building Materials - Environmental Engineering - Computer Simulation - CAD/CAE Emphasis was given to basic methodologies, scientific development and engineering applications. Advances in Civil Engineering and Building Materials will be useful to professionals, academics, and Ph.D. students interested in the above mentioned areas.
First Published in 1968. Routledge is an imprint of Taylor & Francis, an informa company.
Detailing is an essential part of the design process. This thorough reference guide for the design of reinforced concrete structures is largely based on Eurocode 2 (EC2), plus other European design standards such as Eurocode 8 (EC8), where appropriate. With its large format, double-page spread layout, this book systematically details 213 structural elements. These have been carefully selected by Jose Calavera to cover relevant elements used in practice. Each element is presented with a whole-page annotated model along with commentary and recommendations for the element concerned, as well as a summary of the appropriate Eurocode legislation with reference to further standards and literature. The book's website provides AutoCAD files of all of the models, which can be directly developed and adapted for specific designs. Its accessible and practical format makes the book an ideal handbook for professional engineers working with reinforced concrete, as well as for students who are training to become designers of concrete structures.
The contents of the book will highlight the differences between the design and engineering disciplines - strengths and flaws. It will also illustrate examples of interdisciplinary interactions. Any false dichotomies will be revealed and the many non-linear processes borne out of challenging conventions between traditional and new modes of practice will be revealed. Projects based on a body of experience spanning many years will be selected to support experimentation that goes beyond an undisciplined search for originality, innovation and creativity. In addition to writings from Hanif Kara and Daniel Bosia contributions will be sought from specialists in the field who have played a role in the operations of P.art(R) at AKT II - past and present - qualifying them to disseminate and distribute a particular form of 'knowledge'. Features work of architectural practices: Adjaye Associates, Foster + Partners, Heatherwick Studio, HOK, Serie Architects, Wilkinson Eyre Architects and Zaha Hadid Architects. In addition to AKT II, it will encompass the work of engineers and engineering consultants such as: Arup, Cecil Balmond, Buckminster Fuller, Buro Happold, Pier Luigi Nervi and Peter Rice.
The International Conference on the Durability of Concrete Structures (ICDCS) series brings together leading experts in the field of concrete durability from around the world. It presents and discusses recent progress and latest developments in materials technology, assessment of performance both in laboratories and on site, service life concepts and reuse and recycling of construction materials and products to enable concrete construction to be durable and sustainable. This conference at the University of Leeds is the sixth in the ICDCS series and comprises over 110 papers covering seven key themes, preceded by plenary and keynote contributions.
The structural analysis of multi-storey buildings can be carried out using discrete (computer-based) models or creating continuum models that lead to much simpler albeit normally approximate results. The book relies on the second approach and presents the theoretical background and the governing differential equations (for researchers) and simple closed-form solutions (for practicing structural engineers). The continuum models also help to understand how the stiffness and geometrical characteristics influence the three-dimensional behaviour of complex bracing systems. The back-of-the-envelop formulae for the maximum deflection and rotation, load shares, fundamental frequency and critical load facilitate quick global structural analysis for even large buildings. It is shown how the global critical load ratio can be used for monitoring the "health" of the structure acting as a performance indicator and "safety factor". Evaluating the results of over sixteen hundred calculations, the accuracy of the procedures is comprehensively demonstrated by comparing the discrete and continuum results. Nineteen worked examples illustrate the use of the methods, whose downloadable MathCad and Excel worksheets (www.crcpress.com/ 9780367350253) can also be used as templates for similar practical situations.
This practical guide to the assessment and repair of historic buildings is invaluable for structural engineers, architects, surveyors and builders working in all aspects of building conservation. Taking a practical step-by-step approach, the authors discuss the appraisal of buildings and the differences in structural behaviour between new and existing structures. Each stage in the appraisal is explained, using examples from the authors' own work. Each major construction material is assessed in detail, with separate sections on masonry, concrete, timber and the particularly complex issues of iron and steel framed buildings. Techniques for testing the ability of a building to continue its existing use or to be converted to a new use are explained.
Graphic methods for structural design essentially translate problems of algebra into geometric representations, allowing solutions to be reached using geometric construction (ie: drawing pictures) instead of tedious and error-prone arithmetic. This was the common method before the invention of calculators and computers, but had been largely abandoned in the last half century in favor of numerical techniques. However, in recent years the convenience and ease of graphic statics has made a comeback in architecture and engineering. Several professors have begun using graphic statics in the classroom.and.studio environment. But until now, there had been no guidebook that rapidly brings students up to speed on the fundamentals of how to create graphical solutions to statics problems.Graphic Statics introduces all of the traditional graphic statics techniques in a parametric drawing format, using the free program GeoGebra. Then, advanced topics such as indeterminate beams and three dimensional curved surfaces are be covered. Along the way, links to wider design ideas are introduced in a succinct summary of the steps needed to create elegant solutions to many staticequilibrium problems.Meant for students in civil and architectural engineering, architecture,and construction, this practical introduction will also be useful to professionals looking to add the power of graphic statics to their work.
A unique presentation of two key elements of structural design Both damage tolerant design and nondestructive inspection are essential for achieving structural integrity, yet these interrelated disciplines are generally studied independently and implemented by different individuals within an organization. Fundamentals of Structural Integrity is an unparalleled presentation of both of these technologies in a single volume that points out the many interconnected details that must function in concert to assure the prevention of structural failures. This groundbreaking volume introduces the concept of structural integrity and explains how it is achieved. It provides examples of threats to structural integrity, reviews structural certification policies, and presents detailed coverage of damage tolerant design procedures and nondestructive inspection methods. Outstanding features of this comprehensive guide include:
Fundamentals of Structural Integrity is an indispensable resource for mechanical, materials, civil, and aerospace engineers charged with researching, designing, or maintaining safe operation of high-performance structures.
Serviceability failures of concrete structures involving excessive cracking or deflection are relatively common, even in structures that comply with code requirements. This is often as a result of a failure to adequately account for the time-dependent deformations of concrete in the design of the structure. The serviceability provisions embodied in codes of practice are relatively crude and, in some situations, unreliable and do not adequately model the in-service behaviour of structures. In particular, they fail to adequately account for the effects of creep and shrinkage of the concrete. Design for serviceability is complicated by the non-linear and inelastic behaviour of concrete at service loads. Providing detailed information, this book helps engineers to rationally predict the time-varying deformation of concrete structures under typical in-service conditions. It gives analytical methods to help anticipate time-dependent cracking, the gradual change in tension stiffening with time, creep induced deformations and the load independent strains caused by shrinkage and temperature changes. The calculation procedures are illustrated with many worked examples. A vital guide for practising engineers and advanced students of structural engineering on the design of concrete structures for serviceability and provides a penetrating insight into the time-dependent behaviour of reinforced and prestressed concrete structures.
Originally developed for mechanical and aeronautical engineering, structural optimization is not so easily applied to civil and architectural engineering, as structures in these fields are not mass products, but more often unique structures planned in accordance with specific design requirements. The shape and geometry of such structures are determined by a designer or an architect in view of nonstructural performance that includes aesthetics. Until now, books in this area gave little help to engineers working in cooperation with designers, as they covered conceptual material with little consideration of civil engineering applications, or they required a solid background in applied mathematics and continuum mechanics, an area not usually studied by practicing engineers and students in civil engineering. Optimization of Finite Dimensional Structures introduces methodologies and applications that are closely related to design problems encountered in structural optimization, to serve as a bridge between the communities of structural optimization in mechanical engineering and the researchers and engineers in civil engineering. This unparalleled, self-contained work: Provides readers with the basics of optimization of frame structures, such as trusses, building frames, and long-span structures, with descriptions of various applications to real-world problems Summarizes the historical development of methodologies and theorems on optimization of frame structures Introduces many recently developed highly efficient optimization techniques presented with illustrative examples Describes traditional problems with constraints on limit loads, member stresses, compliance, and eigenvalues of vibration, all in detail Offers a unique look at optimization results for spatial trusses and latticed domes Mathematical preliminaries and methodologies are summarized in the book's appendix, so that readers can attend to the details when needed without having to wade through tedious mathematics in the explanatory main chapters. Instead, small examples that can be solved by hand or by using a simple program are presented in these chapters, making the book readily accessible and highly useful for both classroom use and professional self-study.
Because of their complexity and scale, metro structures capture all the essential aspects of a cut-and-cover structure, and so given primary focus in this book. The design of a metro construction is outlined coherently and in detail; and the reader is shown how to apply this design process equally well to other, relatively simple, cut-and-cover structures. Geotechnical and structural engineering principles are combined with both design and construction practice to make this book a unique one-stop resource for engineers working on any cut-and-cover structure.
Structural Mechanics and Design of Metal Pipes: A systematic approach for onshore and offshore pipelines presents a unified and systematic approach to understanding and analyzing the structural behavior of onshore and offshore metallic pipelines. Following an overview of pipeline engineering and pipe fabrication, the mechanics of elastic rings and cylinders is presented as a prelude to structural performance of metal pipes under various loading conditions, which involve pressure and structural loads. The book also discusses special topics, such as geohazards and strain-based design, large-diameter water pipelines, global buckling and mechanically-lined pipes, and outlines approaches for developing state-of-the-art finite element models. In all topics addressed in this book, the mechanical behavior of pipes is related with specific design methods for onshore and offshore pipelines.
Seismic Evaluation, Damage, and Mitigation in Structures covers recent developments in the field of seismic performance assessment of structures. Earthquakes are one of the main natural hazards that can directly cause damage to a structure or even instigate a structural collapse, resulting in significant economic and human loss of life. In the event of an earthquake where many buildings and infrastructure components are not able to function afterward, or if extensive repair and associated disruption are needed, it can be extremely costly and take a long time to resolve. Divided into three parts, this book reviews and discusses earthquake-induced damage evaluation in structures, the repair of structural and non-structural components, and seismic damage mitigation strategies. With contributions from the leading experts in the field, this book is for earthquake engineers, structural engineers, PhD students studying civil engineering, people who can easily inspect and repair structures for quick reoccupation, and for those who understand topics such as design and damage mitigation, and limited structural or non-structural damage in seismic events.
Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more. Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials.
This volume contains the papers presented at the 9th International Symposium on Rock Fragmentation by Blasting, held in Granada, Spain, 13-17 August 2009. A state-of-the-art collection of articles on developments in rock blasting and explosives engineering, with contributions on rock characterization, explosives and initiation systems, blast design and monitoring, fragmentation assessment, numerical modeling, vibrations from blasting, environmental and economical aspects of rock blasting, and more. Containing unique knowledge, case studies, ideas and insights, this volume is must-have literature for researchers and practitioners in the field of explosives and blasting.
Proper treatment of structural behavior under severe loading - such as the performance of a high-rise building during an earthquake - relies heavily on the use of probability-based analysis and decision-making tools. Proper application of these tools is significantly enhanced by a thorough understanding of the underlying theoretical and computational concepts as provided by this book. Detailing the computational aspects of stochastic analysis within the field of structural mechanics, this book first presents a few motivating examples that demonstrate the various random effects within the context of simple structural analysis models. It moreover briefly reviews the fundamental concepts from continuum mechanics and puts them in the perspective of modern numerical tools, such as the finite element method. More advanced topics are developed step by step while gradually increasing the complexity of the structural and probabilistic analyses. This volume is intended for structural analysts and advanced students who wish to explore the benefits of stochastic analysis. It will provide researchers and decision makers working on structural and infrastructural systems with the necessary probabilistic information needed for strategic developments in construction, inspection and maintenance.
Due to strong potential applications and more demanding requirements imposed upon long and thick cylindrical structures, there has been increasing research and development activities during recent years in the field of vibration and passive vibration control of these types of structures. An important step in the study of cylindrical structures is the determination of their vibration modal characteristics. This modal information plays a key role in the design and vibration suppression of these structures when subjected to dynamic excitations. Most reported studies on the dynamic response of cylindrical structures have been restricted to the application of the shell theories. These theories are based on a number of simplifying assumptions. The most important of which is, the considered shell must be relatively thin to assume constant stresses within the cylinder. Therefore, due to this limitation, shell theories are inadequate to accurately describe all possible vibration modes in thick cylindrical structures. The primary scope of this book is to address these problems by applying the theory of elasto-dynamics.
Put a New Class of Structural Composites to Use Real Solutions for Predicting Load Initially designed as thermal barrier materials for aerospace applications and fusion reactors, functionally graded materials (FGMs) are now widely employed as structural components in extremely high-temperature environments. However, little information is commonly available that would allow engineers to predict the response of FGM plates and shells subjected to thermal and mechanical loads. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells is the first book devoted to the geometrically nonlinear response of inhomogeneous isotropic and functionally graded plates and shells. Concerned that the high loads common to many structures may result in nonlinear load deflection relationships due to large deformations, author Hui-Shen Shen has been conducting investigations since 2001, paying particular attention to the nonlinear response of these plates and shells to nonlinear bending, postbuckling and nonlinear vibration. Nearly all the solutions presented are the results of investigations conducted by the author and his collaborators. The rigor of these investigative procedures allows the results presented within these pages to stand as a benchmark against which the validity and accuracy of other numerical solutions may be measured |
You may like...
Circular Economy - Assessment and Case…
Subramanian Senthilkannan Muthu
Hardcover
R3,280
Discovery Miles 32 800
Armco Iron Rust-resisting Products.
American Rolling Mill Company
Hardcover
R753
Discovery Miles 7 530
Fundamentals of Geotechnical…
Braja Das, Nagaratnam Sivakugan
Paperback
R1,231
Discovery Miles 12 310
Reinforced Concrete in Europe, Including…
Albert Ladd 1860 Colby
Hardcover
R860
Discovery Miles 8 600
|