Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This book presents a modern continuum mechanics and mathematical framework to study shell physical behaviors, and to formulate and evaluate finite element procedures. With a view towards the synergy that results from physical and mathematical understanding, the book focuses on the fundamentals of shell theories, their mathematical bases and finite element discretizations. The complexity of the physical behaviors of shells is analysed, and the difficulties to obtain uniformly optimal finite element procedures are identified and studied. Some modern finite element methods are presented for linear and nonlinear analyses. In this Second Edition the authors give new developments in the field and - to make the book more complete - more explanations throughout the text, an enlarged section on general variational formulations and new sections on 3D-shell models, dynamic analyses, and triangular elements. The analysis of shells represents one of the most challenging fields in all of mechanics, and encompasses various fundamental and generally applicable components. Specifically, the material presented in this book regarding geometric descriptions, tensors and mixed variational formulations is fundamental and widely applicable also in other areas of mechanics.
The necessity to save steel leads to a marked tendency towards thin-walled structures. Such structures are made of thin plating, the behaviour - and, of course, design - of which is very significantly affected by stability phenomena. In fact, with up-to-date thin-walled steel plated structures, it is very frequently the point of view of stability that governs the design. So it is not astonishing that the attention of a great number of research teams in various parts of the world has been for a good many years directed to investigations into numerous aspects of the buckling behaviour of steel plated structures. However, the current problems of buckling research, which require to account for the effect of initial imperfections, post-buckled behaviour and plastic reserve of strength (this leading in theoretical research to the necessity to solve boundary value problems of geometrically and physically non-linear partial differential equations, and in experimental studies to conduct experiments on full-size test girders) are very complex and time-consuming. Then it is beyond the means of one investigator, or even of one research team, to deal successfully with such problems and, conse quently, effective cooperation is indispensable. This was also the reason for the initiation of a fruitful collaboration between the first author of this book (Assoc. Prof. J. Djubek, D. Sc. ) and the third author (Assoc. Prof. M. Skaloud, D. Sc."
This text is an introduction to the feedback control of lightly damped flexible structures; the emphasis is placed on basic issues such as actuator and sensor selection, placement and dynamics, and actual implementation for solving practical problems. The book consists of 11 chapters; in chapters 2 to 5, the open-loop transfer functions of various active structures are derived from their constitutive equations; the discussion includes a truss and sandwich beams and plates with embedded piezoelectric actuators and sensors. The virtues of collocated actuator-sensor configurations are pointed out and used to develop active damping with guaranteed stability. Chapters 6 to 8 are devoted to the model-based control of SISO systems; optimal control is developed graphically using the symmetric root locus; the gain-phase relationship is discussed and the design tradeoffs are explained in the frequency domain. The issues of robustness with respect to the parametric uncertainty and the spillover instability are examined. After two short chapters on controllability (ch. 9) and stability (ch. 10), the book concludes with a set of applications to active damping and precision positioning of a set of aerospace, mechanical and civil engineering structures. The book is intended for structural engineers who want to acquire some background in vibration control; it can be used as a textbook for a graduate course on vibration control or active structures. The text is supplemented with 98 problems.
In the past decade, the field of trenchless technology has expanded rapidly in products, equipment, and utilization. This expansion would not have occurred without a strong increase ineconomic incentives to the user. Because theoperating environment has changed, trenchless technology is often the preferred alternative to traditional methods of digging holes and installing conduits. The infrastructure in which we live has become more congested and has to beshared by several users. In addition, the cost of restoring a road or landscaped area after construction may be higher than the cost of installing the conduit. These factors add to the need for trenchless technology-the ability to dig holes without disturbing the surface. In some ways, trenchless technology is a futuristic concept. Ruth Krauss in a children'sbookofdefinitions wrote,"AHole...Is to Dig." But thisstatement is not necessarily true. Today, a hole could be to bore. Trenchless technology is not new. But it certainly has become the buzzword of the construction industry and it appears that it will have a growing impact in the way contractors, utilities, and others install new facilities. Methods to bore horizontal holes were practiced as early as the 18005, but this technology has greatly changed. Today's tools include sophisticated drilling methods, state-of the-art power systems, and electronic guidance techniques. These tools can bore faster, safer, and more accurately, and in many instances more economically, than open-cllt methods. Technology has played an important role in these advances, but economics has become the driving force in making these systems popular.
Matrix analysis of structures is a vital subject to every structural analyst, whether working in aero-astro, civil, or mechanical engineering. It provides a comprehensive approach to the analysis of a wide variety of structural types, and therefore offers a major advantage over traditional metho~ which often differ for each type of structure. The matrix approach also provides an efficient means of describing various steps in the analysis and is easily programmed for digital computers. Use of matrices is natural when performing calculations with a digital computer, because matrices permit large groups of numbers to be manipulated in a simple and effective manner. This book, now in its third edition, was written for both college students and engineers in industry. It serves as a textbook for courses at either the senior or first-year graduate level, and it also provides a permanent reference for practicing engineers. The book explains both the theory and the practical implementation of matrix methods of structural analysis. Emphasis is placed on developing a physical understanding of the theory and the ability to use computer programs for performing structural calculations.
The Leading Guide To Site Design And Engineering-- "Revised And Updated" "Site Engineering for Landscape Architects" is the top choice for site engineering, planning, and construction courses as well as for practitioners in the field, with easy-to-understand coverage of the principles and techniques of basic site engineering for grading, drainage, earthwork, and road alignment. The" Sixth Edition "has been revised to address the latest developments in landscape architecture while retaining an accessible approach to complex concepts. The book offers an introduction to landform and the language of its design, and explores the site engineering concepts essential to practicing landscape architecture today--from interpreting landform and contour lines, to designing horizontal and vertical road alignments, to construction sequencing, to designing and sizing storm water management systems. Integrating design with construction and implementation processes, the authors enable readers to gain a progressive understanding of the material. This edition contains completely revised information on storm water management and green infrastructure, as well as many new and updated case studies. It also includes updated coverage of storm water management systems design, runoff calculations, and natural resource conservation. Graphics throughout the book have been revised to bring a consistent, clean approach to the illustrations. Perfect for use as a study guide for the most difficult section of the Landscape Architect Registration Exam (LARE) or as a handy professional reference, "Site Engineering for Landscape Architects, Sixth Edition" gives readers a strong foundation in site development that is environmentally sensitive and intellectually stimulating.
The Finite Element Method, shortly FEM, is a widely used computational tool in structural engineering. For basic design purposes it usually suf ces to apply a linear-elastic analysis. Only for special structures and for forensic investigations the analyst need to apply more advanced features like plasticity and cracking to account for material nonlinearities, or nonlinear relations between strains and displacements for geometrical nonlinearity to account for buckling. Advanced analysis techniques may also be necessary if we have to judge the remaining structural capacity of aging structures. In this book we will abstain from such special cases and focus on everyday jobs. Our goal is the worldwide everyday use of linear-elastic analysis, and dimensioning on basis of these elastic computations. We cover steel and concrete structures, though attention to structural concrete prevails. Structural engineers have access to powerful FEM packages and apply them intensively. Experience makes clear that often they do not understand the software that they are using. This book aims to be a bridge between the software world and structural engineering. Many problems are related to the correct input data and the proper interpretation and handling of output. The book is neither a text on the Finite Element Method, nor a user manual for the software packages. Rather it aims to be a guide to understanding and handling the results gained by such software. We purposely restrict ourselves to structure types which frequently occur in practise.
This text is an established bestseller in engineering technology programs, and the Seventh Edition of Applied Strength of Materials continues to provide comprehensive coverage of the mechanics of materials. Focusing on active learning and consistently reinforcing key concepts, the book is designed to aid students in their first course on the strength of materials. Introducing the theoretical background of the subject, with a strong visual component, the book equips readers with problem-solving techniques. The updated Seventh Edition incorporates new technologies with a strong pedagogical approach. Emphasizing realistic engineering applications for the analysis and design of structural members, mechanical devices, and systems, the book includes such topics as torsional deformation, shearing stresses in beams, pressure vessels, and design properties of materials. A "big picture" overview is included at the beginning of each chapter, and step-by-step problem-solving approaches are used throughout the book. FEATURES Includes "the big picture" introductions that map out chapter coverage and provide a clear context for readers Contains everyday examples to provide context for students of all levels Offers examples from civil, mechanical, and other branches of engineering technology Integrates analysis and design approaches for strength of materials, backed up by real engineering examples Examines the latest tools, techniques, and examples in applied engineering mechanics This book will be of interest to students in the field of engineering technology and materials engineering as an accessible and understandable introduction to a complex field.
Engineering materials are mainly used for structures. Therefore high-strength, stiffness and sufficient toughness are of prime importance. For a long time engineers thought first in terms of metals. Ma terial scientists developed alloys tailored to the needs of in dustry. Ceramics are known to be brittle and therefore not suitable in the first place for structural application under stress. Polymers with their low modulus became attractive when rein forced with high-strength fibres. Composites processed by poly mer, metal or ceramic matrices and high-strength reinforcements have been introduced into many sectors of industry. Engineering materials for structural applications fulfil a function: they withstand high stresses, temperatures, fatigue, creep etc. But usually we do not call them functional materials. Functional material serve applications apart from classical engineering fields. Electricity conducting materials, semi conductors, memory alloys and others are called functional materials. Both categories of materials structural and functional - cover the aspects of the DLR-Seminar 1991 on "Advanced structural and functional materials." in research and The seminar is focused on advanced materials development or at the edge of being introduced into the market. dual character: Preference was given to materials with a structural and functional, some of them more structural, some more functional in their potential. It was necessary to select typical and representative families of during the years by R + D activities somewhat matured mate rials. It was not intended to cover all possible innovations in a two half-days seminar."
Groundbreaking and comprizing articles by expert contributors, this volume provides a comprehensive treatment of VLFSs and their relationship with the sea, marine habitats, the pollution of costal waters and tidal and natural current flow. It looks in-depth at: VLFS and the colonization of ocean space with their appearance in the waters off developed coastal cities wave properties, which is essential for estimating the loading on the VLFS as well as for modelling structure-fluid interactions hydroelastic and structural analysis of VLFS at an overall level and the cell level the analysis and design of breakwaters simulation models to understand the actual flow of water through the VLFS and to determine the drift forces for the mooring systems anti-corrosion and maintenance systems new research and developments, with emphasis on the Mega-Float, a 1 km long floating test runway. Well-illustrated with photographs, drawings, equations for mathematical modelling and analysis and extensively referenced, Very Large Floating Structures is ideal for professionals, academics and students of civil and structural engineering.
Structural optimization is currently attracting considerable attention. Interest in - search in optimal design has grown in connection with the rapid development of aeronautical and space technologies, shipbuilding, and design of precision mach- ery. A special ?eld in these investigations is devoted to structural optimization with incomplete information (incomplete data). The importance of these investigations is explained as follows. The conventional theory of optimal structural design - sumes precise knowledge of material parameters, including damage characteristics and loadings applied to the structure. In practice such precise knowledge is seldom available. Thus, it is important to be able to predict the sensitivity of a designed structure to random ?uctuations in the environment and to variations in the material properties. To design reliable structures it is necessary to apply the so-called gu- anteed approach, based on a "worst case scenario" or a more optimistic probabilistic approach, if we have additional statistical data. Problems of optimal design with incomplete information also have consid- able theoretical importance. The introduction and investigations into new types of mathematical problems are interesting in themselves. Note that some ga- theoretical optimization problems arise for which there are no systematic techniques of investigation. This monograph is devoted to the exposition of new ways of formulating and solving problems of structural optimization with incomplete information. We recall some research results concerning the optimum shape and structural properties of bodies subjected to external loadings.
Underground facilities, such as tunnels, sewer, water and gas networks form the backbone of the economic life of the modern city. In densely populated areas where the demands for transportation and services are rapidly increasing and the construction of new roads and railways are prohibited, the construction of a tunnel might be the only alternative. Brief and readable, this reference is based on a combined 75 years of field experience and places emphasis is on simple practical rules for designing and planning, underground infrastructures. The books begins with a clear and rigorous exposition of the classification of underground space, important considerations such as geological and engineering and underground planning. This is followed by self-contained chapters concerning applications for underground water storage, underground car parks, underground metros & road tunnels and underground storage of crude oil, lpg and natural gas. The book has 15 chapters covering various usage of underground space. There are about 135 figures and tables. The book contains about 20 case histories/examples. One of the first book to address all of the major areas in which
this technology is used, this book deals with major topics such as:
hydroelectric projects with modern planning of complex underground
structures; underground storages of food items, crude oil and
explosives and highly cautious underground nuclear waste
repositories. Rail and road tunnels and TBM are described briefly.
Risk management in underground infrastructures is of vital
importance. Civil Engineers, Mining Engineers, and Geotechnical
Engineers will find this book a valuable guide to designing and
planning underground infrastructures both in terms of its
applications. Risk management method for underground infrastructures Vital tips for the underground storage of food, water, crude oil, natural gas and munitions Provides design tips for Underground Parking Facilities Instruction for the designing planning and construction for underground Metros and road tunnels Planning and design of underground nuclear waste repositories Clearly explains the benefits and drawbacks of underground facilities Quick guide to the various modern mechanical underground parking options Explanation of construction planning and Risk management Places expert advice for planning and constructing projects at the finger tips"
Metaheuristics for Structural Design and Analysis discusses general properties and types of metaheuristic techniques, basic principles of topology, shape and size optimization of structures, and applications of metaheuristic algorithms in solving structural design problems. Analysis of structures using metaheuristic algorithms is also discussed. Comparisons are made with classical methods and modern computational methods through metaheuristic algorithms. The book is designed for senior structural engineering students, graduate students, academicians and practitioners.
The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.
There is a pressing need for rationalization and standardization of test procedures for metals for use in all types of structure. This book brings together the latest international research developments, presented at a RILEM workshop held in Naples in May 1990.
This book includes examinations of the role of full-scale buildings in the development of structural design methods and recommendations on improved construction practice and safety of building occupants in the event of fire and explosion.
This book forms the proceedings of the international workshop to be held in Essen, Germany. This workshop summarises the conclusion of the technical committee's investigations into the resistance of concrete to freeze-thaw attack, specific in this to resistance with or without de-icing chemicals. It presents the RILEM recommendations on testing the freeze-thaw and de-icing salt resistance of concrete.
An important new state-of-the-art report prepared by RILEM Technical Committee 108 ICC. It has been written by a team of leading international experts from the UK, USA, Canada, Israel, Germany, Denmark, South Africa, Italy and France. Research studies over recent years in the field of cement science have focused on the behaviour of the interfaces between the components of cement-based materials. The techniques used in other areas of materials science are being applied to the complex materials found in cements and concretes, and this book provides a significant survey of the present state of the art.
This book contains the invited contributions to the 1993 Henderson Colloquium organised by the British Group of IABSE (International Association for Bridge and Structural Engineering). It provides an international review of new techniques of designing and constructing joint-free bridges - an approach which is rapidly being developed and used in many parts of the world.
Linking theory to practice, this book provides a better fundamental understanding of Portland cement and hydraulic binders which is necessary to make better concrete. It has been clearly demonstrated that concrete durability is closely linked to its water/binder ratio and proper curing during the first week after casting. In this rigorously presented work, Pierre-Claude Aitcin explains the complexity of the hydration reaction and how to make, use and cure durable and sustainable concrete. This book also details the problems with Portland cement composition at present and outlines the concept of an ideal hydraulic binder which is technically and ecologically efficient, as well as being long-lasting and robust. Binders for Durable and Sustainable Concrete is a practical and innovative reference text which will be particularly relevant to engineers and chemists working in the Portland cement, concrete and admixture industries. This book will also be of interest to academics and graduate-level students in Civil Engineering departments who specialize in Portland cement and concrete technology.
This book provides better inputs for improvement of the buckling load predictions of stiffened cylindrical shells subjected to combined loading. It is based on the International Colloquium Buckling of shell structures, on land, in the sea and in the air, Lyon, France, 17 September 1991.
Deterioration of cement-based materials is a continuing problem, as it results in the substantial shortening of the lives of conventional concrete structures. The main costs result from poor performance and the need for early repair. With more advanced applications, where very long service lives are essential, such as the storage of nuclear waste, an understanding of the degradation processes in order to predict long term performance is very important. this book forms the proceedings of the latest Symposia at the Materials Research Society Autumn meeting in Boston.
Building on the author's Structural Mechanics Fundamentals, this text presents a complete and uniform treatment of the more advanced topics in structural mechanics, ranging from beam frames to shell structures, from dynamics to buckling analysis, from plasticity to fracture mechanics, from long-span to high-rise civil structures. Plane frames Statically indeterminate beam systems: Method of displacements Plates and shells Finite element method Dynamics of discrete systems Dynamics of continuous elastic systems Buckling instability Long-span structures High-rise structures Theory of plasticity Plane stress and plane strain conditions Mechanics of fracture This book serves as a text for graduate students in structural engineering, as well as a reference for practising engineers and researchers.
This volume contains invited contributions from eight of the Gold Medal winners of the Institution of Structural Engineers, presented at the seminar held to celebrate the 60th anniversary of the granting of the Royal Charter to the Institution. The authors are among the pre-eminent engineers of the latter half of the twentieth century, and are of international renown.
Provides a thorough review of properties, durability and use of high performance concrete, derived from recent research and experience. This book contains contributions from the leading French, Canadian and Swiss researchers, designers and material specialists, translated into English for the first time. |
You may like...
Armco Iron Rust-resisting Products.
American Rolling Mill Company
Hardcover
R753
Discovery Miles 7 530
Modeling and Simulation Techniques in…
Pijush Samui, Subrata Chakraborty, …
Hardcover
R5,815
Discovery Miles 58 150
Circular Economy - Assessment and Case…
Subramanian Senthilkannan Muthu
Hardcover
R3,280
Discovery Miles 32 800
Structural Integrity and Failure
Resat Oyguc, Faham Tahmasebinia
Hardcover
Fundamentals of Geotechnical…
Braja Das, Nagaratnam Sivakugan
Paperback
R1,231
Discovery Miles 12 310
Reinforced Concrete in Europe, Including…
Albert Ladd 1860 Colby
Hardcover
R860
Discovery Miles 8 600
|