![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
This text provides a concise and practical guide to timber design, using both the Allowable Stress Design and the Load and Resistance Factor Design methods. It suits students in civil, structural, and construction engineering programs as well as engineering technology and architecture programs, and also serves as a valuable resource for the practicing engineer. The examples based on real-world design problems reflect a holistic view of the design process that better equip the reader for timber design in practice. This new edition now includes the LRFD method with some design examples using LRFD for joists, girders and axially load members. is based on the 2015 NDS and 2015 IBC model code. includes a more in-depth discussion of framing and framing systems commonly used in practice, such as, metal plate connected trusses, rafter and collar tie framing, and pre-engineered framing. includes sample drawings, drawing notes and specifications that might typically be used in practice. includes updated floor joist span charts that are more practical and are easy to use. includes a chapter on practical considerations covering topics like flitch beams, wood poles used for footings, reinforcement of existing structures, and historical data on wood properties. includes a section on long span and high rise wood structures includes an enhanced student design project
"Die beiden ersten Auflagen dieses Buches, erscheinen 1937 und
1985, sind zweifellos zu den Klassikern der Elastizit tstheorie zu
z hlen...
Coastal structures are an important component in any coastal protection scheme. They directly control wave and storm surge action or to stabilize a beach which provides protection to the coast.This book provides the most up-to-date technical advances on the design and construction of coastal structures and sea defenses.Written by renowned practicing coastal engineers, this edited volume focuses on the latest technology applied in planning, design and construction, effective engineering methodology, unique projects and problems, design and construction challenges, and other lesions learned.Many books have been written about the theoretical treatment of coastal and ocean structures. Much less has been written about the practical practice aspect of ocean structures and sea defenses. This comprehensive book fills the gap. It is an essential source of reference for professionals and researchers in the areas of coastal, ocean, civil, and geotechnical engineering.
In Foundation Design: Theory and Practice, Professor N. S. V. Kameswara Rao covers the key aspects of the subject, including principles of testing, interpretation, analysis, soil-structure interaction modeling, construction guidelines, and applications to rational design. Rao presents a wide array of numerical methods used in analyses so that readers can employ and adapt them on their own. Throughout the book the emphasis is on practical application, training readers in actual design procedures using the latest codes and standards in use throughout the world. * Presents updated design procedures in light of revised codes and standards, covering: * American Concrete Institute (ACI) codes * Eurocode 7 * Other British Standard-based codes including Indian codes * Provides background materials for easy understanding of the topics, such as: * Code provisions for reinforced concrete * Pile design and construction * Machine foundations and construction practices * Tests for obtaining the design parameters * Features subjects not covered in other foundation design texts: * Soil-structure interaction approaches using analytical, numerical, and finite element methods * Analysis and design of circular and annular foundations * Analysis and design of piles and groups subjected to general loads and movements * Contains worked out examples to illustrate the analysis and design * Provides several problems for practice at the end of each chapter * Lecture materials for instructors available on the book's companion website Foundation Design is designed for graduate students in civil engineering and geotechnical engineering. The book is also ideal for advanced undergraduate students, contractors, builders, developers, heavy machine manufacturers, and power plant engineers. Students in mechanical engineering will find the chapter on machine foundations helpful for structural engineering applications. Companion website for instructor resources: www.wiley.com/go/rao
Structure as Architecture presents a comprehensive analysis of the indispensable role of structure in architecture. An exploration, as well as a celebration, of structure, the book draws on a series of design studies and case study examples to illustrate how structure can be employed to realize a wide range of concepts in contemporary architecture. By examining design principles that relate to both architecture and structural engineering, Andrew Charleson provides new insights into the relationship between both the technical and aesthetic aspects of architecture. Now in its second edition, the text has been extensively revised and updated throughout. Features include:
More than two hundred case studies of contemporary buildings from countries such as the UK, the US, France, Germany, Spain, Hong Kong, Australia and Japan illustrate how a thorough integration of structure adds layers of richness and enhances the realisation of architectural design concepts.
Poland, like other post-communist countries, is undergoing a transformation into a capitalist system. This transformation affects the country in many ways: economic, social, psychological and also ecological. Ecological problems are strongly connected with the political, economic and psychological inheritance of the past, as well as with changes in the post-communist society. In order to understand these problems, it is necessary to consider the following issues: - the geographic situation of Poland - the political transformations that occurred after World War II - forced development of heavy industry combined with neglect of its effects on the environment, and - the economic problems The three main goals of Environmental Engineering V are (I) to assess the state of scientific research in various areas of environmental engineering. (II) to evaluate organizational, technical and technological progress in contributing to ecological security, and (III) to determine the place of environmental engineering in sustainable development, taking into account political and economic conditions. Environmental Engineering V is of interest for academics, engineers and professionals involved in environmental engineering, seeking solutions for environmental problems in emerging new democracies, especially those who plan to participate in numerous projects sponsored by the European Union.
Lightweight aggregate concrete is undergoing something of a renaissance. Although this material has been available for many years, only now is it being used more widely. This book provides a comprehensive review of this growing field from an international perspective.
Structural Analysis with Finite Elements reveals the theory behind the finite element (FE) method as it relates to structural engineering and explains how to overcome commonly encountered problems and errors found in everyday structural modelling with finite element software. Drawing on nearly 20 years of experience as a structural engineer and FE software developer, Paolo Rugarli gives readers clear guidance on the fundamental principles of the FE method, demonstrating through practical examples how these principles apply to the kind of FE modelling that goes on every day in structural design departments. Explaining computational methods from the software users' point of view, Structural Analysis with Finite Elements also points out the risks involved in using FE software packages, analysing typical errors and problems, with extensive reference to real world examples.
Elevated temperatures are known to affect the properties of both fresh and hardened concrete. This book describes in detail these effects and explains the mechanisms involved with particular reference to their practical aspects.
This overview of the analysis and design of buildings runs from basic principles and elementary structural analysis to the selection of structural systems and materials, and on to foundations and retaining structures. It presents a variety of approaches and methodologies while featuring realistic design examples. As a comprehensive guide and desk reference for practicing structural and civil engineers, and for engineering students, it draws on the author's teaching experience at The City College of New York and his work as a design engineer and architect. It is especially useful for those taking the National Council of Examiners for Engineering and Surveying SE exam.
The Engineering of Foundations, Slopes and Retaining Structures rigorously covers the construction, analysis, and design of shallow and deep foundations, as well as retaining structures and slopes. It includes complete coverage of soil mechanics and site investigations. This new edition is a well-designed balance of theory and practice, emphasizing conceptual understanding and design applications. It contains illustrations, applications, and hands-on examples that continue across chapters. Soil mechanics is examined with full explanation of drained versus undrained loading, friction and dilatancy as sources of shear strength, phase transformation, development of peak effective stress ratios, and critical-state and residual shear strength. The design and execution of site investigations is evaluated with complete discussion of the CPT and SPT. Additional topics include the construction, settlement and bearing capacity of shallow foundations, as well as the installation, ultimate resistance and settlement of deep foundations. Both traditional knowledge and methods and approaches based on recent progress are available. Analysis and design of retaining structures and slopes, such as the use of slope stability software stability calculations, is included. The book is ideal for advanced undergraduate students, graduate students and practicing engineers and researchers.
Shells are basic structural elements of modern technology and everyday life. Examples are automobile bodies, water and oil tanks, pipelines, aircraft fuselages, nanotubes, graphene sheets or beer cans. Also nature is full of living shells such as leaves of trees, blooming flowers, seashells, cell membranes, the double helix of DNA or wings of insects. In the human body arteries, the shell of the eye, the diaphragm, the skin or the pericardium are all shells as well. Shell Structures: Theory and Applications, Volume 3 contains 137 contributions presented at the 10th Conference "Shell Structures: Theory and Applications" held October 16-18, 2013 in Gdansk, Poland. The papers cover a wide spectrum of scientific and engineering problems which are divided into seven broad groups: general lectures, theoretical modelling, stability, dynamics, bioshells, numerical analyses, and engineering design. The volume will be of interest to researchers and designers dealing with modelling and analyses of shell structures and thin-walled structural elements.
Addresses the Question Frequently Proposed to the Designer by Architects: "Can We Do This? Offering guidance on how to use code-based procedures while at the same time providing an understanding of why provisions are necessary, Tall Building Design: Steel, Concrete, and Composite Systems methodically explores the structural behavior of steel, concrete, and composite members and systems. This text establishes the notion that design is a creative process, and not just an execution of framing proposals. It cultivates imaginative approaches by presenting examples specifically related to essential building codes and standards. Tying together precision and accuracy-it also bridges the gap between two design approaches-one based on initiative skill and the other based on computer skill. The book explains loads and load combinations typically used in building design, explores methods for determining design wind loads using the provisions of ASCE 7-10, and examines wind tunnel procedures. It defines conceptual seismic design, as the avoidance or minimization of problems created by the effects of seismic excitation. It introduces the concept of performance-based design (PBD). It also addresses serviceability considerations, prediction of tall building motions, damping devices, seismic isolation, blast-resistant design, and progressive collapse. The final chapters explain gravity and lateral systems for steel, concrete, and composite buildings. The Book Also Considers: Preliminary analysis and design techniques The structural rehabilitation of seismically vulnerable steel and concrete buildings Design differences between code-sponsored approaches The concept of ductility trade-off for strength Tall Building Design: Steel, Concrete, and Composite Systems is a structural design guide and reference for practicing engineers and educators, as well as recent graduates entering the structural engineering profession. This text examines all major concrete, steel, and composite building systems, and uses the most up-to-date building codes.
Bridges the Gap between Geology and Ground Engineering High-quality geological models are crucial for ground engineering projects, but many engineers are not always at ease with the geological terminology and analysis presented in these models, nor with their implications and limitations. Project engineers need to have a sound comprehension of the geological models presented to them, and to be able to discuss the models in so far as they might impinge on the design, safety and possible budgetary or time constraints of the project. They should also fully understand how site investigation data and samples are used to develop and substantiate geological models. Geology for Ground Engineering Projects provides a comprehensive presentation of, and insight into, the critical geological phenomena that may be encountered in many engineering projects, for example rock contact relationships, weathering and karst phenomena in tropical areas, composition of fault zones and variability of rock discontinuities. Examples are provided from around the world, including Southeast Asia, Europe, North and South America, China and India. Comprehensive and well-illustrated, this definitive book: Describes the important geological phenomena that could affect ground engineering projects Provides a practical knowledge-base for relevant geological processes Addresses common geological issues and concerns Rocks are described in relation to the environment of their formation, highlighting the variation in composition, distribution and geotechnical properties that can be expected within a variety of rock associations. Case studies, where geology has been a vital factor, are included. These are written by the project engineers or geologists responsible for the projects. Geology for Ground Engineering Projects is well illustrated with color diagrams and photographs. Readers are directed to satellite images of selected areas to explore for themselves many of the geological features described in this book.
Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. The Structures and Architecture set of book of abstracts (704pp) and full paper searchable CD-ROM (2262pp) presents over 300 selected papers presented at the 2nd International Conference on Structures and Architecture Conference (ICSA2013), organized by the School of Architecture of the University of Minho, Guimaraes, Portugal (July 2013), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering. The set addresses all major aspects of structures and architecture, including building envelopes, comprehension of complex forms, computer and experimental methods, concrete and masonry structures, educating architects and structural engineers, emerging technologies, glass structures, innovative architectural and structural design, lightweight and membrane structures, special structures, steel and composite structures, the borderline between architecture and structural engineering, the history of the relationship between architects and structural engineers, the tectonics of architectural solutions, the use of new materials, timber structures and more. The contributions on creative and scientific aspects of the conception and construction of structures, on advanced technologies and on complex architectural and structural applications represent a fine blend of scientific, technical and practical novelties in both fields. This set is intended for both researchers and practitioners, including architects, structural and construction engineers, builders and building consultants, constructors, material suppliers and product manufacturers, and other experts and professionals involved in the design and realization of architectural, structural and infrastructural projects.
This classic and essential work has been thoroughly revised and updated in line with the requirements of new codes and standards which have been introduced in recent years, including the new Eurocode as well as up-to-date British Standards. It provides a general introduction along with details of analysis and design of a wide range of structures and examination of design according to British and then European Codes. Highly illustrated with numerous line diagrams, tables and worked examples, Reynolds's Reinforced Concrete Designer's Handbook is a unique resource providing comprehensive guidance that enables the engineer to analyze and design reinforced concrete buildings, bridges, retaining walls, and containment structures. Written for structural engineers, contractors, consulting engineers, local and health authorities, and utilities, this is also excellent for civil and architecture departments in universities and FE colleges.
The Deep Mixing Method (DMM), a deep in-situ soil stabilization technique using cement and/or lime as a stabilizing agent, was developed in Japan and in the Nordic countries independently in the 1970s. Numerous research efforts have been made in these areas investigating properties of treated soil, behavior of DMM improved ground under static and dynamic conditions, design methods, and execution techniques. Due to its wide applicability and high improvement effect, the method has become increasingly popular in many countries in Europe, Asia and in the USA. In the past three to four decades, traditional mechanical mixing has been improved to meet changing needs. New types of the technology have also been developed in the last 10 years; e.g. the high pressure injection mixing method and the method that combines mechanical mixing and high pressure injection mixing technologies. The design procedures for the DM methods were standardized across several organizations in Japan and revised several times. Information on these rapid developments will benefit those researchers and practitioners who are involved in ground improvement throughout the world. The book presents the state of the art in Deep Mixing methods, and covers recent technologies, research activities and know-how in machinery, design, construction technology and quality control and assurance. The Deep Mixing Method is a useful reference tool for engineers and researchers involved in DMM technology everywhere, regardless of local soil conditions and variety in applications.
New Edition Now Covers Thin Plates, Plastic Deformation, Dynamics and Vibration Structural and stress analysis is a core topic in a range of engineering disciplines - from structural engineering through to mechanical and aeronautical engineering and materials science. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition provides and supports a conceptual understanding of the theories and formulae, and focuses on the basic principles rather than on the formulae and the solution procedures. It emphasizes problem solving through a structured series of tutorials and problems which build up students' understanding and encourage both numerical and conceptual approaches. It stands apart from other texts which set out rigorous mathematic derivations of formulae followed by worked examples and questions for practice. Students need to be capable of not only solving a structural problem using formulas, but also of understanding their solutions in practical and physical terms. Notwithstanding, the book covers a good range of topics: tension and compression; shear; torsion; bending, properties of cross-sections; shear force and bending moment diagrams; stresses in beams; deflection of beams; complex stresses and theories of elastic failure; energy methods; statically indeterminate systems; and structural instability. The new edition includes more topics, such as plastic deformation, dynamics and introduction to the thin plate theory, which are essential when students start their design courses. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition not only suits undergraduates but is useful for professional engineers who want to get a good grasp of the basic concepts of stress analysis.
Strength Design in Aluminum: A Review of Three Codes has been prepared by the Task Committee on Strength Design in Aluminum of the Structural Engineering Institute of ASCE to compare the Canadian CSA S157-03 Strength Design in Aluminum, 2003; the Eurocode 9 Design of Aluminum Alloy Structures (EC9); and the Aluminum Association's ""Specification for Aluminum Structures: Load and Resistance Factor Design, 2nd Edition"", 2000. Frequently using a tabular format, this report compares how the three codes treat symbols, design principles, material principles, resistance limited by yield or rupture, buckling, and connections. The aim of this book is to provide a basis for the preparation of a common document by signaling the areas of agreement, and more importantly, the areas of disagreement. By stripping the load and resistance factors from the design expressions, this book is able to compare the essential rules of engineering on which the codes are based, and to compare the positions taken by three different code writing committees. This book is a valuable resource for structural engineers working with aluminum, especially in the U.S.A., Canada, or in Europe.
Written to meet the requirements of engineers working in construction and concrete manufacturing, Mineral Admixtures in Cement and Concrete focuses on how to make more workable and durable concrete using mineral admixtures. In particular, it covers pulverized fuel ash (PFA), blast furnace slag (BFS), silica fume (SF), rice husk ash (RHA), and metakaolin (MK), as well as some new admixtures currently under investigation. For each mineral admixture, the book looks at manufacturing and processing, physical characteristics, chemical and mineralogical composition, quality control, and reported experiences. It also examines the provisions of national standards on the admixture's addition to cement and concrete. References to microstructures and chemistry are kept to a minimum and only discussed to the extent necessary to help readers apply the admixtures in practice. The book also addresses hydration, presenting the relevant chemistry and detailing the impact of adding mineral admixtures to concrete. A chapter on strength and durability explains the mechanisms, models, and standards related to concrete deterioration and how to mitigate carbonation, alkali-aggregate reactions, chloride attack and corrosion of reinforcement, external and internal sulphate attack, decalcification, and freeze-thaw action. This book is a useful reference for practicing engineers and students alike. It brings together, in one volume, information on the materials, hydration, and the strength and durability of cement and concrete with mineral admixtures. Offering a deeper understanding of mineral admixtures, it encourages engineers to more effectively use these and other wastes in cement and concrete to support more sustainable growth of the cement and construction industry.
This major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibration response; determination of frequencies and mode shapes; forced vibration response to harmonic and general forcing functions; dynamic analysis of continuous systems;and wave propagation analysis. The key assets of the book include comprehensive coverage of both the traditional and state-of-the-art numerical techniques of response analysis, such as the analysis by numerical integration of the equations of motion and analysis through frequency domain. The large number of illustrative examples and exercise problems are of great assistance in improving clarity and enhancing reader comprehension. The text aims to benefit students and engineers in the civil, mechanical, and aerospace sectors.
Polymer Support Fluids in Civil Engineering provides the practising geotechnical or foundation engineer with an introduction to fluid-supported excavation processes, a brief history of the use of polymers in excavation support with discussion of past successes and importantly reasons for failures. It includes a specification for the use of polymer fluids and all the information necessary to optimise the use of these materials and the performance of the resulting foundation elements. Polymer Support Fluids in Civil Engineering covers all major aspects, from the fundamental material properties to site testing and case histories of polymer use. It is the first book to be published on polymer support fluids in the construction industry
The development of NDT (non-destructive testing) techniques used for the inspection of concrete structures is currently in high demand, because many existing structures have become aged and deteriorated in service. In order to formulate predictions on their stability and to estimate their safety, it is necessary to identify damage signals and to determine their causes. In this regard, the development and establishment of innovative and highly advanced non-destructive methods are required. Acoustic Emission (AE) and related NDE (non-destructive evaluation) techniques have been extensively used to determine crack detection and damage evaluation in concrete. With the move towards a more sustainable society, and the need to extend the long-term service life of infrastructure and aging and disastrous damage due to recent earthquakes, Acoustic Emission (AE) and Related Non-destructive Evaluation (NDE) Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications is a critical reference source for civil engineers, contractors working in construction and materials scientists working both in industry and academia.
This title discusses a broad range of issues related to the use of computed tomography in geomaterials and geomechanics. The contributions cover a wide range of topics, including deformation and strain localization in soils, rocks and sediments; fracture and damage assessment in rocks, asphalt and concrete; transport in porous media; oil and gas exploration and production; neutron tomography and other novel experimental and analytical techniques; image-based computational modeling; and software and visualization tools. As such, this will be valuable reading for anyone interested in the application of computed tomography to geomaterials from both fundamental and applied perspectives. |
![]() ![]() You may like...
Biolubricants - Science and Technology
J.C.J. Bart, E. Gucciardi, …
Hardcover
R6,480
Discovery Miles 64 800
Sustainable Agriculture and Environment…
Andrew K. Dragun, Clem Tisdell
Hardcover
R3,877
Discovery Miles 38 770
Dynamics Near the Subcritical Transition…
Jacob Bedrossian, Pierre Germain, …
Paperback
R2,222
Discovery Miles 22 220
Holistic Simulation of Geotechnical…
Theodoros Triantafyllidis
Hardcover
Machine Vision and Navigation
Oleg Sergiyenko, Wendy Flores-Fuentes, …
Hardcover
R7,744
Discovery Miles 77 440
|