![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
Automotive Innovation: The Science and Engineering behind Cutting-Edge Automotive Technology provides a survey of innovative automotive technologies in the auto industry. Automobiles are rapidly changing, and this text explores these trends. IC engines, transmissions, and chassis are being improved, and there are advances in digital control, manufacturing, and materials. New vehicles demonstrate improved performance, safety and efficiency factors; electric vehicles represent a green energy alternative, while sensor technologies and computer processors redefine the nature of driving. The text explores these changes, the engineering and science behind them, and directions for the future.
The main goal of this book is to show how to modify and optimize the properties of the damping matrix in order to find the most beneficial way of adding damping to a given mechanical system. To this end, a two-degree-of-freedom model of disc brake is analyzed to gain insight into the fundamental physical behavior of damping. In addition, more realistic, high-dimensional finite element brake models are studied and optimized for stability.
This volume brings together scientific experts in different areas that contribute to the railway track and transportation engineering challenges, evaluate the state-of-the-art, identify the shortcomings and opportunities for research and promote the interaction with the industry. In particular, scientific topics that are addressed in this volume include railway ballasted track degradation/settlement problems and stabilization/reinforcement technologies, switches and crossings and related derailments causes, train-induced vibrations and mitigation measures, operations, management and performance of ground transportation, and traffic congestion and safety procedures. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 - The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).
The book serves as a unique integrated platform, which not only describes the design methodology of electro-hydraulic actuation systems but also provides insights into the design of the servo valve, which is the most important component in the system. It presents a step-by-step design process, comparative tables, illustrative figures, and detailed explanations. The book focuses on the design and testing of electro-hydraulic actuation systems, which are increasingly being used in motion control applications, particularly in those where precision actuation at high operational rates is of prime importance. It describes in detail the design philosophy of such high-performance systems, presenting a system used as a physical test setup together with experimental results to corroborate the calculations. Of particular interest are the electro-hydraulic servo valves that form the heart of these actuations. These valves are complex and not much data is available in open literature due to OEM propriety issues. In this context, the book discusses the elaborate mathematical models that have been derived and an approach to validate the mathematical models with test results. Presenting the complex methodology in simple language, it will prove to be a valuable resource for students, researchers, and professional engineers alike.
This book examines the driving dynamics of harvesting machines with large harvesting heads. It looks at how to efficiently use these machines. The author explores a common problem that hinders machine performance when harvesting with very large headers. He deals with concepts for reducing the undesired effects of vehicle dynamics when using these machines. With the steadily increasing capacity of harvesting machines, the working widths of the harvesting heads get wider and the headers get heavier. It has become essential with these giant headers to use header height sensors and header control systems to avoid the headers from being run into the ground when encountering elevation changes in the terrain. A fundamental limitation of the viable speed of header height adjustments arises from the combination of the wider and heavier headers with soft agricultural tires. The current solution to find an appropriate speed of header height adjustments is to perform a header calibration whenever a new header is attached to the machine and to endow the machine operator with the capability to tweak the speed of adjustments manually. The result of an inappropriate speed of height adjustments is a reduction in overall productivity and an under-utilization of the harvesting machine. The author looks at ways to prevent this. He offers detailed modeling of the vertical dynamics including dynamic wheel loads. In addition, the book contains results from simulations and machine tests.
Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.
Oliver Fischer analyzes the interference effects occurring in free-stream wind tunnels as well as their correction and simulation. With this work, the investigated correction method and the comparability of its results as well as flow simulation results are improved. The model wind tunnel of the IVK, University of Stuttgart, is simulated in various wind tunnel configurations. The application of a correction procedure to the corresponding experimental data from the model wind tunnel of the IVK is examined. These correction results are directly comparable with interference-free simulation results and thus allow a conclusion on the functionality of the correction method. Based on these findings, this thesis proposes a modification of the correction method that improves the comparability of corrected experimental results and CFD simulations in idealized test conditions. About the Author Oliver Fischer works as an engineer in aerodynamics development for a renowned German automobile manufacturer.
This book presents approaches to address key challenges based on a vehicle level view and with a special emphasis on Drive-by-Wire systems. The design and testing of modern vehicle electronics are becoming more and more demanding due to increasing interdependencies among components and the safety criticality of tasks. The development towards Drive-by-Wire functionalities in vehicles with multiple actuators for vehicle control further increases the challenge. The book explicitly takes into account the interactions between components and aims at bridging the gap between the need to generate additional customer benefits and the effort to achieve functional safety. The book follows a twofold approach: on the one side, it presents a toolchain to support efficient further development of novel functionalities for Drive-by-Wire vehicles. The toolchain comprises appropriate software tools and scaled and full-scale experimental vehicles. On the other side, development towards functionally safe and flexible Drive-by-Wire vehicles is addressed by proposing a top-down designed architecture for vehicle electronics that is enabled by suitable mechanisms. The resulting goal achievement with regard to functional safety is evaluated based on a novel hierarchical approach.
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai University, Shanghai, China; Shaohua Li is a professor at Shijiazhuang Tiedao University, China.
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain is analyzed and output results presented through the use of specific automotive industrial software (AVL Cruise , IPG CarMaker, AVL Concerto). This methodology of electric and hybrid powertrain design serves to broaden understanding of how the energy flow, efficiency, range and consumption of these vehicles can be adjusted, updated and predicted via development processes.
This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on Electric Vehicle Systems Architecture and Standardization Needs. The objectives of energy efficiency and zero emissions in road transportation imply a paradigm shift in the concept of the automobile regarding design, materials, and propulsion technology. A redesign of the electric and electronic architecture provides in many aspects additional potential for reaching these goals. At the same time, standardization within a broad range of features, components and systems is a key enabling factor for a successful market entry of the electric vehicle (EV). It would lower production cost, increase interoperability and compatibilities, and sustain market penetration. Hence, novel architectures and testing concepts and standardization approaches for the EV have been the topic of an expert workshop of the European Green Vehicles Initiative PPP. This book contains the contributions of current European research projects on EV architecture and an expert view on the status of EV standardization. The target audience primarily comprises researchers and experts in the field.
Microsystems are an important success factor in the automobile industry. In order to fulfil the customers'requests for safety convenience and vehicle economy, and to satisfy environmental requirements, microsystems are becoming indispensable. Thus a large number of microsystem applications came into the discussion. With the international conference AMAA 2001, VDI/VDE-IT provides a platform for the discussion of all MST relevant components for automotive applications. The conference proceedings gather the papers by authors from automobile suppliers and manufacrurers.
An emerging trend in the automobile industry is its convergence with information technology (IT). Indeed, it has been estimated that almost 90% of new automobile technologies involve IT in some form. Smart driving technologies that improve safety as well as green fuel technologies are quite representative of the convergence between IT and automobiles. The smart driving technologies include three key elements: sensing of driving environments, detection of objects and potential hazards and the generation of driving control signals including warning signals. Although radar-based systems are primarily used for sensing the driving environments, the camera has gained importance in advanced driver assistance systems (ADAS). This book covers system-on-a-chip (SoC) designs—including both algorithms and hardware—related with image sensing and object detection by using the camera for smart driving systems. It introduces a variety of algorithms such as lens correction, super resolution, image enhancement and object detections from the images captured by low-cost vehicle camera. This is followed by implementation issues such as SoC architecture, hardware accelerator, software development environment and reliability techniques for automobile vision systems. This book is aimed for the new and practicing engineers in automotive and chip-design industries to provide some overall guidelines for the development of automotive vision systems. It will also help graduate students understand and get started for the research work in this field.
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen-chain, tree, and isolated vertex-and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. (R)/Simulink (R) simulations that demonstrate the effectiveness of the methods detailed.Readers interested in aircraft, vehicle control or various forms of walking robot will be able to learn from Underactuated Mechanical Systems how to estimate the degree of complexity required in the control design of several classes of underactuated systems and proceed on to further generate more systematic control laws according to its methods of analysis.
The automobile is going through the biggest transformation in its history. Automation and electrification of vehicles are expected to enable safer and cleaner mobility. The prospects and requirements of the future automobile affect innovations in major technology fields like driver assistance systems, vehicle networking and drivetrain development. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. It has been the mission of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for more than fifteen years to detect novel trends and to discuss the technological implications from early on. Therefore, the topic of the AMAA 2014 will be “Smart Systems for Safe, Clean and Automated Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field.
This book is an introduction to automotive engineering, to give freshmen ideas about this technology. The text is subdivided in parts that cover all facets of the automobile, including legal and economic aspects related to industry and products, product configuration and fabrication processes, historic evolution and future developments. The first part describes how motor vehicles were invented and evolved into the present product in more than 100 years of development. The purpose is not only to supply an historical perspective, but also to introduce and discuss the many solutions that were applied (and could be applied again) to solve the same basic problems of vehicle engineering. This part also briefly describes the evolution of automotive technologies and market, including production and development processes. The second part deals with the description and function analysis of all car subsystems, such as: · vehicle body, · chassis, including wheels, suspensions, brakes and steering mechanisms, · diesel and gasoline engines, · electric motors, batteries, fuel cells, hybrid propulsion systems, · driveline, including manual and automatic gearboxes. This part addresses also many non-technical issues that influence vehicle design and production, such as social and economic impact of vehicles, market, regulations, particularly on pollution and safety. In spite of the difficulty in forecasting the paths that will be taken by automotive technology, the third part tries to open a window on the future. It is not meant to make predictions that are likely to be wrong, but to discuss the trends of automotive research and innovation and to see the possible paths that may be taken to solve the many problems that are at present open or we can expect for the future. The book is completed by two appendices about the contribution of computers in designing cars, particularly the car body and outlining fundamentals of vehicle mechanics, including aerodynamics, longitudinal (acceleration and braking) and transversal (path control) motion.
Vehicular communication is a key technology in intelligent transportation systems. For many years now, the academic and industrial research communities have been investigating these communications in order to improve efficiency and safety of future transportation. Vehicular networking offers a wide variety of applications, including safety applications as well as infotainment applications. This book highlights the recent developments in vehicular networking technologies and their interaction with future smart cities in order to promote further research activities and challenges. SAADI BOUDJIT, University of Paris 13, France HAKIMA CHAOUCHI, Telecom SudParis, France YACINE GHAMRI, University La Rochelle, France HALABI HASBULLAH, Universiti Teknologi Petronas, Malaysia ANIS LAOUITI, Telecom SudParis, France SAOUCENE MAHFOUDH, Jeddah, Saudi Arabia PAUL MUHLETHALER, INRIA, France AMIR QAYYUM, Mohamad Ali Jinnah University, Pakistan NAUFAL SAAD, Universiti Teknologi Petronas, Malaysia AHMED SOUA, NIST, USA HAJIME TAZAKI, University of Tokyo, Japan APINUN TUNPAN, Aintec, Thailand WEI WEI, Xi'an University, China RACHID ZAGROUBA, ENSI, Tunisia.
This book is about how to develop future automotive products by applying the latest methodologies based on a systems engineering approach and by taking into account many issues facing the auto industry such as meeting government safety, emissions and fuel economy regulations, incorporating advances in new technology applications in structural materials, power trains, vehicle lighting systems, displays and telematics, and satisfying the very demanding customer. It is financially disastrous for any automotive company to create a vehicle that very few people want. To design an automotive product that will be successful in the marketplace requires carefully orchestrated teamwork of experts from many disciplines, substantial amount of resources, and application of proven techniques at the right time during the product development process. Automotive Product Development: A Systems Engineering Implementation is intended for company management personnel and graduate students in engineering, business management and other disciplines associated with the development of automotive and other complex products.
The book reports on a new methodology for optimization and evaluation of traffic safety, which simulates the processes involved in traffic conflicts on the basis of detailed dynamical, human, and technical models. The models incorporate the whole spectrum of human cognitive functions and responses, the responses of an active safety system and the interactions between the human and the system as they occur in a sample of relevant traffic contexts. Using the developed method, the author was able to assess the reduction in accidents and injuries as well as the possible side effects resulting from a preventive pedestrian-protection system. The book provides practical solutions in the area of active safety systems. It represents an interesting source of information for researchers and professionals as well as all stakeholders, including policy makers and consumer advocates, with the common goal of promoting the implementation and adoption of highly efficient systems for preventing accidents and injuries.
This book focuses on the small car segment of India's automotive industry to explain the emergence of lead markets. The authors contend that the current understanding of lead markets does not sufficiently explain the business practices that are born out of the intensified globalization of innovation. Lead markets are considered crucial for the global diffusion of new products and this book investigates whether sustainable lead markets can also emerge in developing economies, and if so, under which conditions. The authors question the conventional wisdom and propose updates and extensions to the lead market theory to better reflect the changing ground realities on ground.
This contributed volume covers all relevant aspects of road vehicle automation including societal impacts, legal matters, and technology innovation from the perspectives of a multitude of public and private actors. It is based on an expert workshop organized by the Transportation Research Board at Stanford University in July 2013. The target audience primarily comprises academic researchers, but the book may also be of interest to practitioners and professionals. Higher levels of road vehicle automation are considered beneficial for road safety, energy efficiency, productivity, convenience and social inclusion. The necessary key technologies in the fields of object-recognition systems, data processing and infrastructure communication have been consistently developed over the recent years and are mostly available on the market today. However, there is still a need for substantial research and development, e.g. with interactive maps, data processing, functional safety and the fusion of different data sources. Driven by stakeholders in the IT industry, intensive efforts to accelerate the introduction of road vehicle automation are currently underway.
The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be "Smart Systems for Safe and Green Vehicles". This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de
This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected methods aimed at the reduction of particulate emissions from automobiles.
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validated by means of extensive simulative analysis and real field deployments in different application scenarios. This book represents a reference for professional technologist, postgraduates and researchers in the area of Intelligent Transportation Systems (ITSs), wireless communication and distributed systems. |
You may like...
Biometric Security and Privacy…
Richard Jiang, Somaya Al-Maadeed, …
Hardcover
R4,834
Discovery Miles 48 340
Floral Love - Abstract Cross Stitch…
Kathleen George, Cross Stitch Collectibles
Paperback
R430
Discovery Miles 4 300
|