![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
"Recent Advances in Intelligent Control Systems" gathers contributions from workers around the world and presents them in four categories according to the style of control employed: fuzzy control; neural control; fuzzy neural control; and intelligent control. The contributions illustrate the interdisciplinary antecedents of intelligent control and contrast its results with those of more traditional control methods. A variety of design examples, drawn primarily from robotics and mechatronics but also representing process and production engineering, large civil structures, network flows, and others, provide instances of the application of computational intelligence for control. Presenting state-of-the-art research, this collection will be of benefit to researchers in automatic control, automation, computer science (especially artificial intelligence) and mechatronics while graduate students and practicing control engineers working with intelligent systems will find it a good source of study material.
Universal vehicular communication promises many improvements in terms of ac- dent avoidance and mitigation, better utilization of roads and resources such as time and fuel, and new opportunities for infotainment applications. However, before widespread acceptance, vehicular communication must meet challenges comparable to the trouble and disbelief that accompanied the introduction of traf c lights back then. The rst traf c light was installed in 1868 in London to signal railway, but only later, in 1912, was invented the rst red-green electric traf c light. And roughly 50 years after the rst traf c light, in 1920, the rst four-way traf c signal comparable to our today's traf c lights was introduced. The introduction of traf c signals was necessary after automobiles soon became prevalent once the rst car in history, actually a wooden motorcycle, was constructed in 1885. Soon, the scene became complicated, requiring the introduction of the "right-of-way" philosophy and later on the very rst traf c light. In the same way the traf c light was a necessary mean to regulate the beginning of the automotive life and to protect drivers, passengers, as well as pedestrians and other inhabitants of the road infrastructure, vehicular communication is necessary to accommodate the further growth of traf c volume and to signi cantly reduce the number of accidents.
This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book's exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that facilitates in-car connectivity while on the move. An essential guide for technicians working in a fast-developing field, this new volume will be warmly welcomed as a powerful aid in their endeavors.
Ground Vehicle Dynamics is devoted to the mathematical modelling and dynamical analysis of ground vehicle systems composed of the vehicle body, the guidance and suspension devices and the corresponding guideway. Automobiles on uneven roads and railways on flexible tracks are prominent representatives of ground vehicle systems. All these different kinds of systems are treated in a common way by means of analytical dynamics and control theory. In addition to a detailed modelling of vehicles as multibody systems, the contact theory for rolling wheels and the modelling of guideways by finite element systems as well as stochastic processes are presented. As a particular result of this integrated approach the state equations of the global systems are obtained including the complete interactions between the subsystems considered as independent modules. The fundamentals of vehicle dynamics for longitudinal, lateral and vertical motions and vibrations of automobiles and railways are discussed in detail.
Intelligent Freeway Transportation Systems: Functional Design focuses on the efficient use of resources in the design of ITS. It discusses the principles of top down design starting with objectives and requirements, and provides guidance for the development and evaluation of functional design alternatives according to cost effectiveness principles. It shows how transportation planning principles such as Wardrop's Laws and traffic diversion principles relate to functional ITS device selections and equipment locations. Methodologies for translating objectives to functional device types are provided. Application factors to identify device deployment densities (e.g. number of detectors per mile) as a function of traffic conditions are provided, as are evaluation models for evaluating the benefits of design alternatives based on traffic conditions. Design guidance and benefits evaluation include the following functions: (1) Non-recurrent congestion - Improvement of incident clearance time, (2) Non recurrent congestion - Incident information to motorists, (3) Recurrent congestion - Information to motorists, (4) Ramp metering, (5) Motorist service patrols.
Microsystems applications (MST) in automobiles have become commonplace: they enable the introduction of a series of new functions and at the same time the replacement of existing technologies offering improved performance and better value for money. Microsystems are indispensable for fulfilling a complete transition from the mechanically driven automobile system to a mechanically based but ICT-driven system as part of a likewise complex environment. With the introduction of micro-systems a series of challenges arise regarding complexity, systems design, reliability, serviceability, etc. These challenges have to be addressed in order to meet high customer expectations concerning performance and price.
Microsystems are an important factor that contribute to an automobile model's success. To meet the customer's desire for safety, convenience and vehicle economy, and to satisfy environmental standards, microsystems play a critical factor. Microsystems applications (MST) have already resulted in improved performance and better value for money. But the advances implemented reveal only the beginning of a revolution in the vehicle sector, which aims at a complete transition from the mechanically driven automobile system to a mechanically based but ICT-driven system. The selected contributions from AMAA 2003 treat safety (both preventive and protective), powertrain (online measurement and control of engine and transmission subsystems), comfort and HMI (systems to enhance the comfort of passengers and human machine interface issues), and networked Vehicle (all aspects of intra car systems and ambient communication networks).
This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as "automotive systems engineering". These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.
During September 24-26, 2001, the Faculty of Aerospace Engineering of the Delft University of Technology in the Netherlands organised the Glare - the New Material for Aircraft Conference, an international conference on the relationship between design, material choice and application of aircraft materials with respect to new developments in industry. Eminent representatives from the aircraft manufacturing world, including manufacturers, airlines, airports, universities, governments and aviation authorities, were present at this conference to meet and exchange ideas - see the group photo on the next two pages. The fact that the conference was held just two weeks after 'September 11, 2001' put things in a rather unique perspective. The aim of the conference was to illustrate the many unique applications of the Glare family of fibre metal laminates and to provide for the exchange and distribution of information regarding this material in order to stimulate their acceptance and promote further application. The introduction of fibre metal laminates into the commercial aviation market took about 20 years' time. Introducing new technologies should not be taken lightly, however; the aircraft industry is by nature rather conservative and innovations must therefore be proven - a paradox actually - in all possible ways before they can be introduced in real aircraft structures. Not only do technical aspects play a role in this respect; historical, cultural, economical and political issues are equally important.
This vo1 e contains the papers presented at the NATO Advanced Study Institute of New Advances in Distributed Computer Systems held between 15th and 26th June, 1981 at the Chateau de Bonas, France. The aim of the meeting was to promote an interchange of ideas between experts in the inter1inked fie1ds of communications and computers in order to determine the essential areas for future deve1opment. Its programme was arranged to exp10re a number of current topics inc1uding the pub1ic data-communication networks set up by the PTTs or corresponding bodies in various countries, 1arge-sca1e non-pub1ic systems such as ARPANET and its 1atest deve1opments, international systems such as the air1ines' SITA network, the recent and very important deve10pments in loca1 area networks and relevant deve10pments by universities and other higher educationa1 bodies. The recent moves towards form- isation and the 1aying down of a theoretica1 basis to guide future deve10pments and standards were discussed with particu1ar reference to the International Standards Organisation "7-1ayer model for Open System Interconnection" and the deve10pment of formal mathematica1 methods for specifying and ana1ysing communication systems and their protoco1s. Consideration was also given to the theoretica1 techniques, and their practica1 realisation, now becoming avai1ab1e to ensure privacy and security of information transmitted over digital communication systems. Fina11y the penetration of the concepts of distributed processing into the domain of computer architecture, giving such possibi1ities as array processors and other non-von Neumann architectures formed the subject of severa1 of the sessions.
As today s spark-ignition and diesel engines have to fulfil constantly increasing demands with regard to CO2 reduction, emissions, weight and lifetime, detailed knowledge of the components of an internal combustion engine is absolutely essential. Automotive engineers can no longer survive without such expertise, regardless of whether they are involved in design, development, testing or maintenance. This text book provides answers to questions relating to the design, production and machining of cylinder components in a comprehensive technical analysis.
Increasing concern with fuel consumption leads to widespread interest in lightweight structures for transportation vehicles. Several competing technologies are available for the structural connections of these structures, namely welding, mechanical fastening / riveting, and adhesive technologies. Arranged in a single volume, this work is to presents state-of-the-art discussions of those aspects and processes presenting greater novelty whilst simultaneously keeping wide applicability potential and interest. The topics chosen have the common feature of being of currently applied in lightweight structures, and one of the characteristics of this work is bringing together relevant state-of-the-art information usually presented in separate publications specializing in a single technology. The book provides discussions and examples of concrete applications, so that it appeals to researchers and designers and engineers involved in the design and fabrication of lightweight structures.
This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.
Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.
Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks.The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.
Turbulence takes place in most flow situations whethertheyoccur naturally or in technological systems. Therefore, considerable effort is being expended in an attempt to understand the phenomenon of turbulence. The recent discovery ofcoherent structure in turbulent shear flows and the modem developments in computer capabilities have revolutionized research work in turbulence. There is a strong evidence that the coherent structure in turbulent shear flows is reminiscent of nonlinear stability waves. As such, the interest in nonlinear stability waves has increased not only for the understandingofthe latterstages of the laminar-turbulent transition process, but also for understanding the coherent structures in turbulent flows. Also. the advances in computers have made direct numerical simulation possible at Low-Reynolds numbers and large-eddy simulation possible at high Reynolds numbers. This made first-principles prediction of turbulence-generated noise feasible. Therefore, this book aims at presenting a graduate-level introductory study of turbulence while accounting for such recent views of concern to researchers. This book is an outgrowth oflecture notes on the subject offered to graduate students in engineering. The book should be of interest to research engineers and graduatestudents in science and engineering. The theoretical basis presented is sufficient not only for studying the specialized literature on turbulence but also for theoretical investigations on the subject.
Over the last several years, there has been much discussion on the interrelation of CO2 emissions with the global warming phenomenon. This in turn has increased pressure to develop and produce more fuel efficient engines and vehicles. This is the central topic of this book. It covers the underlying processes which cause pollutant emissions and the possibilities of reducing them, as well as the fuel consumption of gasoline and diesel engines, including direct injection diesel engines. As well as the engine-related causes of pollution, which is found in the raw exhaust, there is also a description of systems and methods for exhaust post treatment. The significant influence of fuels and lubricants (both conventional and alternative fuels) on emission behavior is also covered. In addition to the conventional gasoline and diesel engines, lean-burn and direct injection gasoline engines and two-stroke gasoline and diesel engines are included. The potential for reducing fuel consumption and pollution is described as well as the related reduction of CO2 emissions. Finally, a detailed summary of the most important laws and regulations pertaining to pollutant emissions and consumption limits is presented. This book is intended for practising engineers involved in research and applied sciences as well as for interested engineering students.
A purpose of science is to organize diversified factual knowledge into a coherent body of information, and to present this from the simplest possible viewpoint. This is a formidable task where our knowledge is incomplete, as it is with explosions. Here one runs the risk of oversimplification, naivete, and incom pleteness. Nevertheless a purpose of this work is to present as simply as possible a general description of the basic nature of explosions. This treatise should be of interest to all who are working with explosives such as used in construction or in demolition work, in mining operations, or in military applications. It should also be of interest to those concemed with disasters such as explosions or earthquakes, to those involved in civil defense precautions, and to those concemed with defense against terrorists. That is, this material should be of interest to all who wish to utilize, or to avoid, the effects of explosions as weil as to those whose interest is primarily scientific in nature."
To a large extent, our lives on this earth depend on systems that operate auto matically. Manysuchsystems can be found in nature and others are man made. These systems can be biological, electrical, mechanical, chemical, or ecological, to namejust a few categories. Our human body is full ofsystems whose conti nued automatic operation is vital for our existence. On a daily basis we come in contact with man made systems whose automatic operation ensures increa sed productivity, promotes economic development and improves the quality of life. A primary component that is responsible for the automatic operation of a system is a device or mechanism called the controller. In man made systems one must first design and then implement such a controller either as a piece of hardware or as software code in a computer. The safe and efficient automatic operation of such systems is testimony to the success of control theorists and practitioners over the years. This book presents new methods {or controller design. The process ofdeveloping a controller or control strategy can be dramatically improved if one can generate an appropriate dynamic model for the system under consideration. Robust control design deals with the question of how to develop such controllers for system models with uncertainty. In many cases dynamic models can be expressed in terms oflinear, time invariant differential equations or transfer functions.
Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation principles, the mathematical background of high-order sliding-mode control and to a feasibility study for the use of sliding modes in the control of an automotive fuel stack. Part II presents experimental results of sliding-mode-control application to a laboratory fuel cell and deals with subsystem-based modelling, detailed design, and observability and controllability. Simulation results are contrasted with empirical data and performance, robustness and implementation issues are treated in depth. Possibilities for future research are also laid out. The state-of-the-art research in nonlinear control of fuel cells presented in this volume will be of interest to academics and graduate students working in nonlinear control and sliding modes, particularly those studying fuel-cell systems. Control engineers and designers working with fuel-cell technology in industrial environments can also find new ideas and inspiration from reading Sliding-mode Control of PEM Fuel Cells."
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author s commercial MATLAB(r)-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text. Academic researchers and graduate students studying nonlinear control systems and control engineers dealing with nonlinear plant, particularly mechatronic or aerospace systems will find Computer-aided Nonlinear Control System Design to be of great practical assistance adding to their toolbox of techniques for dealing with system nonlinearities. A basic knowledge of calculus, nonlinear analysis and software engineering will enable the reader to get the best from this book."
Solid Freeform Fabrication is a set of manufacturing processes that are capable of producing complex freeform solid objects directly from a computer model of an object without part-specific tooling or knowledge. In essence, these methods are miniature manufacturing plants which come complete with material handling, information processing and materials processing. As such, these methods require technical knowledge from many disciplines; therefore, researchers, engineers, and students in Mechanical, Chemical, Electrical, and Manufacturing Engineering and Materials and Computer Science will all find some interest in this subject. Particular subareas of concern include manufacturing methods, polymer chemistry, computational geometry, control, heat transfer, metallurgy, ceramics, optics, and fluid mechanics. History of technology specialists may also find Chapter 1 of interest. Although this book covers the spectrum of different processes, the emphasis is clearly on the area in which the authors have the most experience, thermal laser processing. In particular, the authors have all been developers and inventors of techniques for the Selective Laser Sintering process and laser gas phase techniques (Selective Area Laser Deposition). This is a research book on the subject of Solid Freeform Fabrication.
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlierapproaches, based on some degree of heuristics, to the use ofmore and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applied to system, sub-system or component design parameters and is performed based on system models; others require applications of optimization directly to experimental systems to determine either optimal calibration or the optimal control trajectory/control law. "Optimization and Optimal Control in Automotive Systems "reflects the state-of-the-art in and promotes a comprehensive approach to optimization in automotive systems by addressing its different facets, by discussing basic methods and showing practical approaches and specific applications of optimization to design and control problems for automotive systems. The book will be of interest both to academic researchers, either studying optimization or who have links with the automotive industry and to industrially-based engineers and automotive designers."
The global crisis the automotive industry has slipped into over the second half of 2008 has set a fierce spotlight not only on which cars are the right ones to bring to the market but also on how these cars are developed. Be it OEMs developing new models, suppliers integerating themselves deeper into the development processes of different OEMs, analysts estimating economical risks and opportunities of automotive investments, or even governments creating and evaluating scenarios for financial aid for suffering automotive companies: At the end of the day, it is absolutely indispensable to comprehensively understand the processes of auto- tive development - the core subject of this book. Let's face it: More than a century after Carl Benz, Wilhelm Maybach and Gottlieb Daimler developed and produced their first motor vehicles, the overall concept of passenger cars has not changed much. Even though components have been considerably optimized since then, motor cars in the 21st century are still driven by combustion engines that transmit their propulsive power to the road s- face via gearboxes, transmission shafts and wheels, which together with spri- damper units allow driving stability and ride comfort. Vehicles are still navigated by means of a steering wheel that turns the front wheels, and the required control elements are still located on a dashboard in front of the driver who operates the car sitting in a seat. |
You may like...
Platter's South African Wine Guide 2026
Diners Club International
Hardcover
The "Dematerialized" Insurance…
Pierpaolo Marano, Ioannis Rokas, …
Hardcover
R4,490
Discovery Miles 44 900
Centering the Margin - Agency and…
Alexander Horstmann, Reed L. Wadley
Hardcover
R2,839
Discovery Miles 28 390
|