![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
There is a growing social interest in developing vision-based vehicle guidance systems for improving traffic safety and efficiency and the environment. Ex amples of vision-based vehicle guidance systems include collision warning systems, steering control systems for tracking painted lane marks, and speed control systems for preventing rear-end collisions. Like other guidance systems for aircraft and trains, these systems are ex pected to increase traffic safety significantly. For example, safety improve ments of aircraft landing processes after the introduction of automatic guidance systems have been reported to be 100 times better than prior to installment. Although the safety of human lives is beyond price, the cost for automatic guidance could be compensated by decreased insurance costs. It is becoming more important to increase traffic safety by decreasing the human driver's load in our society, especially with an increasing population of senior people who continue to drive. The second potential social benefit is the improvement of traffic efficiency by decreasing the spacing between vehicles without sacrificing safety. It is reported, for example, that four times the efficiency is expected if the spacing between cars is controlled automatically at 90 cm with a speed of 100 kmjh compared to today's typical manual driving. Although there are a lot of tech nical, psychological, and social issues to be solved before realizing the high density jhigh-speed traffic systems described here, highly efficient highways are becoming more important because of increasing traffic congestion."
It is difficult to do justice to fracture mechanics in a textbook, for the subject encompasses so many disciplines. A general survey of the field would serve no purpose other than give a collection of references. The present book by Professor E. E. Gdoutos is refreshing because it does not fall into the esoteric tradition of outlining equations and results. Basic ideas and underlying principles are clearly explained as to how they are used in application. The presentations are concise and each topic can be understood by advanced undergraduates in material science and continuum mechanics. The book is highly recommended not only as a text in fracture mechanics but also as a reference to those interested in the general aspects of failure analysis. In addition to providing an in-depth review of the analytical methods for evaluating the fundamental quantities used in linear elastic fracture mechanics, various criteria are discussed re: O. ecting their limitations and applications. Par ticular emphases are given to predicting crack initiation, subcritical growth and the onset of rapid fracture from a single criterion. Those models in which it is assumed that the crack extends from tip to tip rely on the specific surface energy concept. The differences in the global and energy states before and after crack extension were associated with the energy required to create a unit area of crack surface. Applications were limited by the requirement of self-similar crack growth."
Gone are the days when mobility was nearly always a question of having a vehicle. Today the issue of road capacity is becoming ever more pressing. Even the safest, most comfortable and 100% emissions-free vehicle is only of limited use if it is stuck in a traffic jam. Mobility is a key human need and an important factor in the economy. It is a matter of logic that a com pany like DaimlerChrysler should make every endeavor to safeguard mo bility, thereby fulfilling humanity's economic, social and environmental needs. Nonetheless, traffic and mobility problems are the inevitable result of a concentration of people and markets. Bombay, Lagos, Shanghai, Jakarta, Sao Paulo, Cairo, Mexico City - virtually half of the world's population is urban-based, and the majority live in the metropolitan regions of the Third World. The mega-cities in the so-called developing nations are facing a dramatic increase in traffic levels. Gridlock looms on the horizon. Should traffic-choked streets become a permanent and daily occurrence, economic development will be held in check and pollution will spiral."
This volume contains the paper presented at the 13th DGLRlST AB- Symposium held at the Technische Universitat Miinchen, November 12 to 14, 2002. STAB is the German Aerospace Aerodynamics Association, founded towards the end of the 70's, whereas DGLR is the German Society for Aeronautics and Astronautics (Deutsche Gesellschaft fUr Luft- und Raumfahrt - Lilienthal Oberth e.V.). The mission of STAB is to foster development and acceptance of the dis- cipline "Aerodynamics" in Germany. One of its general guidelines is to concentrate resources and know-how in the involved institutions and to avoid duplication in research work as much as possible. Nowadays, this is more necessary than ever. The experience made in the past makes it easier now, to obtain new knowledge for solving today's and tomorrow's prob- lems. STAB unites German scientists and engineers from universities, research- establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics for aerospace and other applications. This has always been the basis of numerous common research activities sponsored by different funding agencies.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, . . . . , new challenges. Much of this deVelopment work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The high performance control systems applications in aerospace and astronautics almost have a tradition of exploiting the most advanced control theoretical developments first. The optimal control and ffitering paradigm associated with the names of Kalman, Bucy, Anderson and Moore found application in the astronautics of the 1960'S and 1970'S. At the beginning of the 1980'S, control theory moved on to robustness, singular values and mu-analysis. This new work was associated with the names of Zames, Doyle, Glover, Balas among others. The Advances in Industrial Control monograph series have published several volumes over the years which have archived the applications experience garnered from applying robust control to the aerospace sector problems. Rick Lind and Marty Brenner add to this set with their volume on robust aeroservoelastic stability. This volume reports the application of the structured singular value to aeroelastic and aeroservoelastic aerospace problems.
Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid `cross-flow' disturbances as well as Tollmien-Schlichting and Goertler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, .... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Micro-technology and modern communications technology are revolutionising many aspects of our daily lives and so it is not surprising that it is impacting societal transportation systems whether our highways, airways, seaways or railways. The Advances in Industrial Control series reported on these developments for long haul railway systems in a monograph by Howlett and Pudney (ISBN 3-S40-19990-X, 1995). Now it is the turn of transportation in a contribution from Pushkin Kachroo and Kaan Ozbay. The authors viewpoint is that this new set of transportation problems are control problems and that control engineers should be highly active in this field. Their volume covers all the aspects of modelling, problem formulation, and applies various control methodologies to solve the control problems formulated.
Includes MATLAB-based computational and design algorithms utilizing the "Linear Systems Toolkit." All results and case studies presented in both the continuous- and discrete-time settings.
Dynamic instability or dynamic buckling as applied to structures is a term that has been used to describe many classes of problems and many physical phenomena. It is not surprising, then, that the term finds several uses and interpretations among structural mechanicians. Problems of parametric resonance, follower-force, whirling of rotating shafts, fluid-solid interaction, general response of structures to dynamic loads, and several others are all classified under dynamic instability. Many analytical and experimental studies of such problems can be found in several books as either specialized topics or the main theme. Two such classes, parametric resonance and stability of nonconservative systems under static loads (follower-force problems), form the main theme of two books by V. V. Bolotin, which have been translated from Russian. Moreover, treatment of aero elastic instabilities can be found in several textbooks. Finally, analytical and experimental studies of structural elements and systems subjected to intense loads (of very short duration) are the focus of the recent monograph by Lindberg and Florence. The first chapter attempts to classify the various "dynamic instability" phenomena by taking into consideration the nature of the cause, the character of the response, and the history of the problem. Moreover, the various concepts and methodologies as developed and used by the various investigators for estimating critical conditions for suddenly loaded elastic systems are fully described. Chapter 2 demonstrates the concepts and criteria for dynamic stability through simple mechanical models with one and two degrees of freedom.
This volume contains eighteen contributions of work, conducted since 2000 in the French - German Research Programme "Numerical Flow Simulation," which was initiated in 1996 by the Centre National de la Recherche Scientifique (CNRS) and the Deutsche Forschungsgemeinschaft (DFG). The main purpose of this third publication on the research programme is again to give an overview over recent progress, and to make the obtained results available to the public. The reports are grouped, like those in the first and the second publi cation (NNFM 66, 1998, and NNFM 75, 2001), under the four headings "Devel opment of Solution Techniques," "Crystal Growth and Melts," "Flows of React ing Gases, Sound Generation" and "Turbulent Flows." All contributions to this publication were reviewed by a board consisting of T. Alziary de Roquefort (Poi tiers, France), H. W. Buggisch (Karlsruhe, Germany), S. Candel (Paris, France), U. Ehrenstein (Nice, France), Th. Gallouet (Marseille, France), W. Kordulla (Gottingen, Germany), A. Lerat (Paris, France), 1. Piquet (Nantes, France), R. Rannacher (Heidelberg, Germany), G. Warnecke (Magdeburg, Germany), and the editor. The responsibility for the contents of the reports nevertheless lies with the contributors."
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under the inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book."
In the last decades, a lot of effort has been directed towards manipulation of turbulent boundary layers by passive devices such as external manipulators (thin flat plates or aerofoil section devices embedded in the outer layer) and/or internal manipulators (small streamwise grooves acting directly on the inner region) for the purpose of reducing viscous drag. The former are commonly referred to as LEI3U s or BLADEs and the laHer riblets or grooves. Though the details of the mechanisms are not firmly understood, world-wide experimenta.! data are available and consistent enough in order to assert the potential of such devices for turbulent drag reduction. It should be noted that following on from recent and successful flight tests, the concept of using grooved surfaces is rather close to finding industrial applications. During the last few years, in Europe, there has been considerable interest in lookillg at the behaviour of such passi,'e turbulence manipulators. A lot of intense research, concerning both experimental and theoretical studies. has been carried out in some European research centres. For the last fi\'e years. informal gatherings. called ,.\ \'orking Pi\l'ty i\Ieetings" , have been set up, once a year; the aim of these meetings is not only to bring together European researchers acti,'e in the field of turbulent drag reduction by passi"e means and to hear about recent de\'c!opments but also to o u t1 ine sui tit ble directions for future research or collaborative programmes.
Experts discuss how to repair, rehabilitate and modernize the transportation infrastructure in emerging Central Europe. The focus is on applying modern engineering technologies and management decision-making technologies to solve common and regional environmental issues in ground transportation, with emphasis on roads and bridges. The book includes situation, position and technical papers and state-of-the-art presentations from scientific and engineering experts as well as from government agency officials responsible for national and regional transport. Concise, cogent recommendations are presented. The reader is provided with current information on related environmental and transportation issues. Experts and lay readers will benefit from the information on economic, social, and political aspects.
Global Mobile Satellite Systems - A Systems Overview makes mobile satellite communications understandable for communication engineers, candidates for an engineering degree, technicians, managers, and other decision makers such as financiers and regulators. It provides a systems oriented top-level view of mobile satellite communications. In particular, it focuses on Global Mobile Satellite Systems (GMSS) including active programs such as Globalstar, IRIDIUM, ORBCOMM, ACeS, and Thuraya, or so-called the second generation mobile satellite systems class. The authors start with a brief description of three generations of satellite systems in use or planned in the telecommunications industry. Selected systems architectural trades are identified and explained to illustrate how various GMSS systems are formulated, developed and evaluated. It includes an examination of market demand trends, business trades, regulatory issues as well as technical considerations. Major issues are examined in trade study style to provide easy access to key information. Key systems drivers such as orbit trades between LEO's, MEO's, and GEO's, frequency, protocols, customer bases, and regulatory and engineering issues are included. This book should appeal to individuals interested in the basic elements of Global Mobile Satellite Systems.
There is an increasing demand for dynamic systems to become safer and more reliable. This requirement extends beyond the normally accepted safety-critical systems such as nuclear reactors and aircraft, where safety is of paramount importance, to systems such as autonomous vehicles and process control systems where the system availability is vital. It is clear that fault diagnosis is becoming an important subject in modern control theory and practice. Robust Model-Based Fault Diagnosis for Dynamic Systems presents the subject of model-based fault diagnosis in a unified framework. It contains many important topics and methods; however, total coverage and completeness is not the primary concern. The book focuses on fundamental issues such as basic definitions, residual generation methods and the importance of robustness in model-based fault diagnosis approaches. In this book, fault diagnosis concepts and methods are illustrated by either simple academic examples or practical applications. The first two chapters are of tutorial value and provide a starting point for newcomers to this field.The rest of the book presents the state of the art in model-based fault diagnosis by discussing many important robust approaches and their applications. This will certainly appeal to experts in this field. Robust Model-Based Fault Diagnosis for Dynamic Systems targets both newcomers who want to get into this subject, and experts who are concerned with fundamental issues and are also looking for inspiration for future research. The book is useful for both researchers in academia and professional engineers in industry because both theory and applications are discussed. Although this is a research monograph, it will be an important text for postgraduate research students world-wide. The largest market, however, will be academics, libraries and practicing engineers and scientists throughout the world.
The thrust of modern research on turbulence in fluids is concerned with coherent structures and modelling. Riblets have been shown to reduce drag, and the papers presented in this volume tackle the main question of the mechanism responsible for this behaviour in turbulent flow. The contributions in this volume were presented at the Sixth Drag Reduction Meeting held at Eindhoven during November 1991. This volume will be a useful reference work for engineers, physicists and applied mathematicians interested in the topic of fluid turbulence.
The authors, leading representatives of Russian space research and industry, show the results and future prospects of astronautics at the start of the third millennium. The focus is on the development of astronautics in Russia in the new historical and economic conditions. The text spotlights the basic trends in space related issues before moving on to describe the possibilities of the wide use of space technologies and its numerous applications such as navigation and communication, space manufacturing, and space biotechnology. The book contains a large amount of facts described in a way understandable without specialist knowledge. The text is accompanied by many photographs, charts and diagrams, mostly in color.
Random Vibration in Spacecraft Structures Design is based on the lecture notes "Spacecraft structures" and "Special topics concerning vibration in spacecraft structures" from courses given at Delft University of Technology. The monograph, which deals with low and high frequency mechanical, acoustic random vibrations is of interest to graduate students and engineers working in aerospace engineering, particularly in spacecraft and launch vehicle structures design.
This book constitutes the joint refereed proceedings of the 4th International Workshop on Communication Technologies for Vehicles/Trains, Nets4Cars 2012 and Nets4Trains 2012, held in Vilnius, Lithuania, in April 2012. The 4 full papers of the rail track and 11 full papers of the road track presented were carefully reviewed and selected from numerous submissions. They provide an overview over latest technologies and research in the field of intra- and inter-vehicle communications (protocols and standards), mobility and traffic models (models, methodologies, and techniques), testing, and applications.
"From the preface: " "The present text deals with attitude dynamics and is devoted to satellites of finite size. It begins with a discussion of the inertia moment tensor, Euler's law, Euler's angles, Euler's equations, and Euler's frequencies. After that a thorough treatment of the concept of centre of gravity versus centre of mass is given. After libration has been discussed and gyrodynamics proper has been dealt with, the attitude of the moment-free satellite, including the gyrostat, is studied. Particular attention is paid to the attitude behaviour of torquefree single and dual spinners, and the new collinearity theorems are introduced and explored to predict attitude stability and attitude drift. The derivation of each significant formula is followed by the discussion of a practical sample problem in order to acquaint the student with typical situations, typical results, and typical numerical values. There are numerous problems following each chapter. The most important data and the answers to the problems are compiled in appendices."
The author developed this text over many years, teaching graduate courses in advanced dynamics and flexible multibody dynamics at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The book presents a unified treatment of rigid body dynamics, analytical dynamics, constrained dynamics, and flexible multibody dynamics. A comprehensive review of numerical tools used to enforce both holonomic and nonholonomic constraints is presented. Advanced topics such as Maggi s, index-1, null space, and Udwadia and Kalaba s formulations are presented because of their fundamental importance in multibody dynamics. Methodologies for the parameterization of rotation and motion are discussed and contrasted. Geometrically exact beams and shells formulations, which have become the standard in flexible multibody dynamics, are presented and numerical aspects of their finite element implementation detailed. Methodologies for the direct solution of the index-3 differential-algebraic equations characteristic of constrained multibody systems are presented. It is shown that with the help of proper scaling procedures, such equations are not more difficult to integrate than ordinary differential equations. This book is illustrated with numerous examples and should prove valuable to both students and researchers in the fields of rigid and flexible multibody dynamics." " "
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.
MANNED SPACE FLIGHT introduces into space travel parameters that are unique. Man can live without food for a reasonably long period; without water, the period becomes quite a bit shorter; but without air, the result-almost instantaneous-is death. This would make the atmosphere the most important consideration. In fact, however, man needs all three components: oxygen, water, and food; and if anyone of them failS, he is doomed. With our space efforts approaching trips of several weeks in length and certainly heading for month-long journeys, it is most appropriate to ask: Are we ready to provide an adequate atmo spheric milieu for the astronauts? The present volume represents the first integrated attempt to answer this question on a scientific level and on a broad basis of physical and mechanical, biological, biochemical and medical factors. The main features of this work were presented at a symposium of the Division of Industrial and Engineering Chemistry of the American Chemical Society, held in Atlantic City on Septem ber 13, 1965. The volume is an expanded and reorganized treatise based on, but not merely proceeding from, the symposium. Obviously, medical aspects are of paramount importance. A down-to-earth appraisal of the status quo, presented by Dr. E. M. Roth, shows that the problem of 100% oxygen atmosphere still is beset with some uncertainty in the 200 to 500 mm. total cabin pressure range. Additionally, attention is called to inherent dangers of greatly increased flammability in such an atmosphere."
Symposia in the areas of fluid mechanics and hydraulics are, in many cases, strongly oriented toward the researcher, with only peripheral participation of the practicing engineer. The possible danger therein is an increased emphasis on those problems that are theoretically or experimentally attractive, rather than those that would most effectively lead to improved design criteria. To bring the practical aspects of flow-induced vibrations to the forefront, and to enhance in terchange of information on shortcomings of design criteria, it was decided to extend invitations to fielrl engineers, designers and researchers. The leading theme of the Symposium would be experiences from practice, encompassing informa tion on failures, fatigue, and wear; and wherever possible, the associated cures would be addressed as well. Moreover, to promote interaction between disciplines, a variety of specialities, ranging from tall structures to heat exchanger and re actor components, was included; but to keep the undertaking within a reasonable scope, topics dealing with slender body aerodynamics, and high-speed internal and external flow, were not incorporated. During this planning phase, many of our colleagues encouraged us to follow through with the spirit of the Symposium, and provided a number of helpful suggestions. It was gratifying to receive the en dorsement of the International Association for Hydraulic Research and the Inter national Union for Theoretical and Applied Mechanics, as the variety of interests represented by these organizations enhanced the theme of the Symposium.
I wrote this book because I wanted to learn more about interstel lar flight. Not the Star Trek notion of tearing around the Galaxy in a huge spaceship-that was obviously beyond existing tech nology-but a more realistic mission. In 1989 I had videotaped Voyager 2's encounter with Neptune and watched the drama of robotic exploration over and over again. I started to wonder whether we could do something similar with Alpha Centauri, the nearest star to the Sun. Everyone seemed to agree that manned flight to the stars was out of the question, if not permanently then for the indefinitely foreseeable future. But surely we could do something with robotics. And if we could figure out a theoretical way to do it, how far were we from the actual technology that would make it happen? In other words, what was the state of our interstellar technology today, those concepts and systems that might translate into a Voyager to the stars? Finding answers meant talking to people inside and outside of NASA. I was surprised to learn that there is a large literature of interstellar flight. Nobody knows for sure how to propel a space craft fast enough to make the interstellar crossing within a time scale that would fit the conventional idea of a mission, but there are candidate systems that are under active investigation. Some of this effort begins with small systems that we'll use near the Earth and later hope to extend to deep space missions." |
You may like...
Michigan's C. Harold Wills - The Genius…
Alan Naldrett, Lynn Lyon Naldrett
Paperback
Transactions of the Institution of…
Institution of Engineers and S Scotland
Paperback
R535
Discovery Miles 5 350
Description of an Invention for Removing…
William Graham McIvor
Paperback
R333
Discovery Miles 3 330
|