![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.
Deep Space Craft opens the door to interplanetary flight. It looks at this world from the vantage point of real operations on a specific mission, and follows a natural trail from the day-to-day working of this particular spacecraft, through the functioning of all spacecraft to the collaboration of the various disciplines to produce the results for which a spacecraft is designed. These results are of course mostly of a scientific nature, although a small number of interplanetary missions are also flown primarily to test and prove new engineering techniques. The author shows how, in order to make sense of all the scientific data coming back to Earth, the need for experiments and instrumentation arises, and follows the design and construction of the instruments through to their placement and testing on a spacecraft prior to launch. Examples are given of the interaction between an instrument's science team and the mission's flight team to plan and specify observations, gather and analyze data in flight, and finally present the results and discoveries to the scientific community. This highly focused, insider's guide to interplanetary space exploration uses many examples of previous and current endeavors. It will enable the reader to research almost any topic related to spacecraft and to seek the latest scientific findings, the newest emerging technologies, or the current status of a favorite flight. In order to provide easy paths from the general to the specific, the text constantly refers to the Appendices. Within the main text, the intent is general familiarization and categorization of spacecraft and instruments at a high level, to provide a mental framework to place in context and understand any spacecraft and any instrument encountered in the reader's experience. Appendix A gives illustrated descriptions of many interplanetary spacecraft, some earth-orbiters and ground facilities to reinforce the classification framework. Appendix B contains illustrated detailed descriptions of a dozen scientific instruments, including some ground-breaking engineering appliances that have either already been in operation or are poised for flight. Each instrument's range of sensitivity in wavelengths of light, etc, and its physical principle(s) of operation is described. Appendix C has a few annotated illustrations to clarify the nomenclature of regions and structures in the solar system and the planets' ring systems, and places the solar system in context with the local interstellar environment.
In-Vehicle Corpus and Signal Processing for Driver Behavior is comprised of expanded papers from the third biennial DSPinCARS held in Istanbul in June 2007. The goal is to bring together scholars working on the latest techniques, standards, and emerging deployment on this central field of living at the age of wireless communications, smart vehicles, and human-machine-assisted safer and comfortable driving. Topics covered in this book include: improved vehicle safety; safe driver assistance systems; smart vehicles; wireless LAN-based vehicular location information processing; EEG emotion recognition systems; and new methods for predicting driving actions using driving signals. In-Vehicle Corpus and Signal Processing for Driver Behavior is appropriate for researchers, engineers, and professionals working in signal processing technologies, next generation vehicle design, and networks for mobile platforms.
Global mobile satellite communications (GMSC) are specific satellite communication systems for maritime, land and aeronautical applications. It enables connections between moving objects such as ships, vehicles and aircrafts, and telecommunications subscribers through the medium of communications satellites, ground earth stations, PTT or other landline telecommunications providers. Mobile satellite communications and technology have been in use for over two decades. Its initial application is aimed at the maritime market for commercial and distress applications. In recent years, new developments and initiatives have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits such as Little and Big LEO configurations and hybrid satellite constellations as Ellipso Borealis and Concordia system. This book is important for modern shipping, truck, train and aeronautical societies because GMSC in the present millennium provides more effective business and trade, with emphasis on safety and commercial communications. Global Mobile Satellite Communications is written to make bridges between potential readers and current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphicons, illustrations and mathematics equations. Global Mobile Satellite Communications represents telecommunications technique and technology, which can be useful for all technical staff on vessels at sea and rivers, on all types of land vehicles, on planes, on off shore constructions and for everyone possessing satellite communications handset phones.
The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. New this year are papers de scribing the development of very large pulse tube cryocoolers to provide up to 1500 watts of cooling for industrial applications such as cooling the superconducting magnets of Mag-lev trains, coolmg superconducting cables for the power mdustry, and liquefymg natural gas. Pulse tube coolers can be driven by several competing compressor technologies. One class of pulse tube coolers is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide coolmg m the 30 to 100 K temperature range and operate ^t frequencies from 30 to 60 Hz. A second type of pulse tube cooler is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation (~1 Hz) to achieve temperatures in the 2 to 10 K temperature range. The third type of pulse tube cooler is driven by a thermoacoustic oscillator, a heat engine that functions well in remote environments where electricity is not readily available. All three types are described, and in total, nearly half of this proceedings covers new developments in the pulse tube arena. Complementing the work on low-temperature pulse tube and Gifford-McMahon cryocoolers is substantial continued progress on rare earth regenerator materials.
Y. Fujimori, Symposium Programme Committee Chair, and Faculty Member, International Space University e-mail: fujimori@isu. isunet. edu M. Rycroft, Faculty Member, International Space University e-mail: rycroft@isu. isunet. edu Building on the foundations provided by the International Space Station, now partially constructed and already in use in low Earth orbit, what will be the future directions of human spaceflight? This was the key question discussed from many viewpoints - technical, entrepreneurial, governmental, legal - at the seventh Annual Symposium held in Strasbourg, France, early in June 2002. Many ideas on the "whys" and the "hows" of our future exploration of the final frontier were put forward in a stimulating environment. The unique perspective of the International Space University (ISU) - namely an interdisciplinary, international and intercultural perspective - enhanced both the presentations and the discussions. More than 150 people attended the Symposium, including the current members of the Master of Space Studies class who are attending an 11 month course at ISU. They are young professionals and postgraduate students who develop in-depth some part of the broad Symposium theme in their parallel Team Projects. Their final reports will be completed at the end of July 2002, and will be published independently. 1 Beyond the ISS: The Future of Human Spaceflight Keynote Address: A Summary The Need for a New Vision E. Vallerani, Advanced Logistic Technology Engineering Center, The Italian Gateway to the ISS, Corso Marche 79, Torino 10146, Italy e-mail: vallerani. ernesto@spacegate-altec.
Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes-non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms 'far - moved from equilibrium' is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.
Service Life Prediction of Polymeric Materials: Global Perspectives combines developed content derived from topics discussed in the Fourth International Symposium on Service Life Prediction (Key Largo, Florida, December 2006). This critical examination of the existing and alternative methodologies used to assess the service life of polymeric materials presents readers with the advances in accelerated and field exposure testing protocols. Written by established experts in the service life community, this volume introduces advanced methods, including high throughput and combinatorial analyses, models data collection and storage formats. Researchers and engineers involved with materials and polymer science, coatings technologists and automotive materials will find Service Life Prediction of Polymeric Materials: Global Perspectives a useful tool.
"Perspectives on ITS" is a collection of the Intelligent Transportation Systems (ITS) writings of Professor Joseph M. Sussman from MIT. Professor Sussman is a long-time major participant in the ITS world, beginning with his work on the core writing team in the original "IVHS" Strategic Plan in 1991-92, and continuing on to the present day. He has worked in a number of ITS area and is a keen observer of the ITS scene in general. The book contains extended articles on various aspects of ITS and perspectives on the future of the field, building on its rich history; organizational issues related to ITS - in particular, regionalism and the transportation / information infrastructure; and ITS' implications for the transportation profession at large and for transportation education. In addition it contains 14 selected columns from the ITS Quarterly.
Fuel cells are a very promising technology for the clean and efficient production of power. Fuel Cell Technology is an up-to-date survey of the development of this technology and will be bought by researchers and graduate students in materials control and chemical engineering working at universities and institutions and researchers and technical managers in commercial companies working in fuel cell technology.
Thiseditedbookispublishedin honorofDr. GeorgeJ. Vachtsevanos, ourDr. V, c- rently Professor Emeritus, School of Electrical and Computer Engineering, Georgia Institute of Technology, on the occasion of his 70th birthday and for his more than 30 years of contribution to the discipline of Intelligent Control and its application to a wide spectrum of engineering and bioengineering systems. The book is nothing but a very small token of appreciation from Dr. V's former graduate students, his peers and colleagues in the profession - and not only - to the Scientist, the Engineer, the Professor, the mentor, but most important of all, to the friend and human being. All those who have met Dr. V over the years and haveinteractedwith himin someprofessionaland/orsocial capacityunderstandthis statement: Georgenevermadeanybodyfeelinferiortohim, hehelpedandsupported everybody, and he was there when anybody needed him I was not Dr. V's student. I rst met him and his wife Athena more than 26 years ago during one of their visits to RPI, in the house of my late advisor, Dr. George N. Saridis. Since then, I have been very fortunate to have had and continue to have interactions with him. It is not an exaggeration if I say that we all learned a lot from him.
"Biofuels for Road Transport: A Seed to Wheel Perspective" provides a review of the history, the current status and perspectives for biofuels used in road transport, across the full 'seed-to-wheel' life cycle of these fuels. Successive chapters cover the history of biofuels; the first- and second-generation liquid fuels and biofuels for powering electric vehicles; fossil fuel replacement, land requirement, greenhouse gas balances and environmental burdens of ethanol, esters derived from fatty acids ('biodiesel'), Fischer-Tropsch diesel and HTU diesel; competing technologies (fossil fuels, increases in energy-efficiency and photovoltaic power) and how they compare to biofuels; and the perspectives for biofuels. Cost, availability, technological development, competition with biomass for food and for soil organic carbon and environmental perspectives are also discussed.
The primary goal of this book is the specification, design and testing of an inertially stabilized camera platform for assistance systems with the focus on adaptive inertial measurement. This can be divided into sub-goals which also served as internal milestones for the project; development of a highly miniaturized inertial measurement unit, development of adaptive control algorithms for gaze stabilization, industrial application and development of multi-sensor fusion algorithms.
The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con strained systems of equations. Global optimization applications are widespread in all disciplines and they range from atomistic or molecular level to process and product level representations. The primary goal of this book is three fold: first, to introduce the reader to the basics of deterministic global optimization; second, to present important theoretical and algorithmic advances for several classes of mathematical prob lems that include biconvex and bilinear; problems, signomial problems, general twice differentiable nonlinear problems, mixed integer nonlinear problems, and the enclosure of all solutions of nonlinear constrained systems of equations; and third, to tie the theory and methods together with a variety of important applications."
It turned out to be really a rare and happy occasion that we know exact1y when and how a new branch of space physics was born, namely, a physics of solar cosmic rays. It happened on February 28 and March 7, 1942 when the fIrst "cosmic ray bursts" were recorded on the Earth, and the Sun was unambiguously identifIed for the fIrst time as the source of high-velocity 10 particles with energies up to > 10 eV. Just due to such a high energy these relativistic particles have been called "solar cosmic rays" (SCR), in distinction from the "true" cosmic rays of galactic origin. Between 1942 and the beginning ofthe space era in 1957 only extremely high energy solar particle events could be occasionally recorded by cosmic ray ground-Ievel detectors and balloon borne sensors. Since then the detection techniques varied considerably and the study of SCR turned into essential part of solar and solar-terrestrial physics.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
The present book Essential Spaceflight Dynamics and Magnetospherics
describes, in the first instance, some of the key aspects of
celestial mechanics and spaceflight dynamics. It begins with
classical two and three body problems illustrative of the aesthetic
aspects of applying analytical methods of investigation to
celestial mechanics. Then, osculating orbital elements are
introduced as well as analysis techniques sufficient to evaluate
the influence of various disturbing forces on spacecraft. Next a
theory of manoeuvres is outlined and the methodology of making
interplanetary trajectory corrections. Ideas involving various
approaches to orbital element determinations using measured data
are also considered. The forces applied to a spacecraft can result
in the development of torques that influence attitude motion and
the effects of the most important of these are described in terms
of equilibrium positions, periodic motions, steady-state and
transient motions. Also considered is the problem of attitude
control of a spacecraft using active and/or passive methods of
orientation and stabilization. In addition, a more advanced
treatment of the development of attitude control systems is
provided.
Condition modelling and control is a technique used to enable decision-making in manufacturing processes of interest to researchers and practising engineering. Condition Monitoring and Control for Intelligent Manufacturing will be bought by researchers and graduate students in manufacturing and control and engineering, as well as practising engineers in industries such as automotive and packaging manufacturing.
The book is concerned with mathematical modelling of supersonic and hyper sonic flows about bodies. Permanent interest in this topic is stimulated, first of all, by aviation and aerospace engineering. The designing of aircraft and space vehicles requires a more precise prediction of the aerodynamic and heat transfer characteristics. Together with broadening of the flight condition range, this makes it necessary to take into account a number of gas dynamic and physical effects caused by rarefaction, viscous-inviscid interaction, separation, various physical and chemical processes induced by gas heating in the intensive bow shock wave. The flow field around a body moving at supersonic speed can be divided into three parts, namely, shock layer, near wake including base flow, and far wake. The shock layer flow is bounded by the bow shock wave and the front and lat eral parts of the body surface. A conventional approach to calculation of shock layer flows consists in a successive solution of the inviscid gas and boundary layer equations. When the afore-mentioned effects become important, implementation of these models meets difficulties or even becomes impossible. In this case, one has to use a more general approach based on the viscous shock layer concept.
Logistics and supply chain management deal with managing the ?ow of goods or services within a company, from suppliers to customers, and along a supply chain where companies act as suppliers as well as customers. As transportation is at the heart of logistics, the design of tra?c and transportation networks combined with the routing of vehicles and goods on the networks are important and demanding planning tasks. The in?uence of transport, logistics, and s- ply chain management on the modern economy and society has been growing steadily over the last few decades. The worldwide division of labor, the conn- tion of distributed production centers, and the increased mobility of individuals lead to an increased demand for e?cient solutions to logistics and supply chain management problems. On the company level, e?cient and e?ective logistics and supply chain management are of critical importance for a company's s- cessanditscompetitiveadvantage. Properperformanceofthelogisticsfunctions can contribute both to lower costs and to enhanced customer service. Computational Intelligence (CI) describes a set of methods and tools that often mimic biological or physical principles to solve problems that have been di?cult to solve by classical mathematics. CI embodies neural networks, fuzzy logic, evolutionary computation, local search, and machine learning approaches. Researchersthat workinthis areaoften comefromcomputer science, operations research, or mathematics, as well as from many di?erent engineering disciplines. Popular and successful CI methods for optimization and planning problems are heuristic optimization approaches such as evolutionary algorithms, local search methods, and other types of guided search methods.
In May 1995 a meeting took place at the Manchester Metropolitan Uni versity, UK, with the title International Workshop on Numerical Methods for Wave Propagation Phenomena. The Workshop, which was attended by 60 scientists from 13 countries, was preceded by a short course enti tled High-Resolution Numerical Methods for Wave Propagation Phenom ena. The course participants could then join the Workshop and listen to discussions of the latest work in the field led by experts responsible for such developments. The present volume contains written versions of their contributions from the majority of the speakers at the Workshop. Professor Amiram Harten, but for his untimely death at the age of 50 years, would have been one of the speakers at the Workshop. His remarkable contributions to Numerical Analysis of Conservation Laws are commemo rated in this volume, which includes the text of the First Harten Memorial Lecture, delivered by Professor P. L. Roe from the University of Michigan in Ann Arbour, USA."
Extensive numerical methods for computing design sensitivity are included in the text for practical application and software development. The numerical method allows integration of CAD-FEA-DSA software tools, so that design optimization can be carried out using CAD geometric models instead of FEA models. This capability allows integration of CAD-CAE-CAM so that optimized designs can be manufactured effectively.
This book presents the fmdings of a comparative study of three European metropolitan regions: Vienna, Barcelona and Stockholm. The heart of the work consists of empirical studies carefully designed and developed in order to identify the main actors and mechanisms supporting technological innovation in each of the metropolitan regions. The authors have also highlighted the similarities and differences across regions and countries, investigating how these came to be, and discussing the possible implications. The introductory as well as the concluding Chapter was written by Manfred M. Fischer who, assisted by Attila Varga, was also responsible for Chapter 2 on the Metropolitan Region of Vienna. Javier Revilla Diez contributed Chapter 3 on the Barcelona Metropolitan Region. Folke Snickars has provided Chapter 4 which examines the Metropolitan Region of Stockholm and. All authors have reviewed and commented on the whole contents so that the volume represents a collective endeavour which has been rendered as homogeneous as possible. A particular effort has been made to ensure that the study is based on a common conceptual framework.
Heat transfer enhancement in single-phase and two-phase flow heat exchangers in important in such industrial applications as power generating plant, process and chemical industry, heating, ventilation, air conditioning and refrigeration systems, and the cooling of electronic equipment. Energy savings are of primary importance in the design of such systems, leading to more efficient, environmentally friendly devices. This book provides invaluable information for such purposes.
"Systems of Commercial Turbofan Engines" gives the reader information about the operation of the engine systems, its components and the terminology used throughout the industry. The engine systems are explained by the use of examples from today's engines. So the readers, from aircraft mechanics to commercial pilot, become familiar with the current technology in this field and attains a deeper knowledge of the systems of commercial turbofan engines. To understand the operation of gas turbine engines used in aircraft, it is not enough to understand the basic operation of a gas turbine. It is also necessary to understand the operation and the design of its auxiliary systems. This book is an introduction into the systems of modern commercial aircraft gas turbine engines. It is made for the reader who is familiar with the basic operation of aircraft gas turbine engine. |
You may like...
Michigan's C. Harold Wills - The Genius…
Alan Naldrett, Lynn Lyon Naldrett
Paperback
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,041
Discovery Miles 40 410
Description of an Invention for Removing…
William Graham McIvor
Paperback
R333
Discovery Miles 3 330
|