![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
Analog Circuit Design contains in total 18 tutorials. They reflect the contributions of 6 experts in each of the three fields covered by the three chapters mentioned in the subtitle, as presented at the 15th workshop on Advances in Analog Circuit Design (AACD) held in Maastricht, April 2006. This book is number 15 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of analog circuit design and related CAD, mainly in the fields of basic analog modules, mixed-signal electronics, AD and DA converters, RF systems, and automotive electronics. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest developments in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
Modelling, Dynamics and Control of Electrified Vehicles provides a systematic overview of EV-related key components, including batteries, electric motors, ultracapacitors and system-level approaches, such as energy management systems, multi-source energy optimization, transmission design and control, braking system control and vehicle dynamics control. In addition, the book covers selected advanced topics, including Smart Grid and connected vehicles. This book shows how EV work, how to design them, how to save energy with them, and how to maintain their safety. The book aims to be an all-in-one reference for readers who are interested in EVs, or those trying to understand its state-of-the-art technologies and future trends.
This book was written as a graduate student course--Shock Dynamics. Up to now, the first author has taught this course to the graduate students in the field of Fluid Mechanics, Department of Modern Mechanics, University of Science and Technology of China for seven times. In the spring semester 1989, during his visit to the United States, the first author taught this course to the graduate students of Department of Mathemat ics, University of Colorado at Denver. At the same time, he gave a series of four lectures on Shock Dynamics to the graduate students of Department of Aerospace Engineering Sciences, University of Colorado at Boulder. In 1991, during the first author's visit to Japan, he gave some lectures on Shock Dynamics in Tohoku University, University of Tokyo and Kyushu Uni versity. The dynamic phenomena of shock waves such as propagation, diffraction, reflection, refraction and interaction of shock waves may be studied by using experimental methods, numerical calculations and theoretical analyses. Although the detailed flow patterns of phenomena of shock motion can be obtained by using experimental methods and numerical calculations of solving Euler Equation or Navier-Stokes Equation, for example, the diffractions of shock waves by wedges form various phenomena of reflection--RR, SMR, CMR and DMR, we also need to analyse the process of the formation of shock waves in various phenomena of diffraction, reflection and interaction by using theoretical methods."
Increasing demands on the output performance, exhaust emissions, and fuel consumption necessitate the development of a new generation of automotive engine functionality. This monograph is written by a long year developmental automotive engineer and offers a wide coverage of automotive engine control and estimation problems and its solutions. It addresses idle speed control, cylinder flow estimation, engine torque and friction estimation, engine misfire and CAM profile switching diagnostics, as well as engine knock detection. The book provides a wide and well structured collection of tools and new techniques useful for automotive engine control and estimation problems such as input estimation, composite adaptation, threshold detection adaptation, real-time algorithms, as well as the very important statistical techniques. It demonstrates the statistical detection of engine problems such as misfire or knock events and how it can be used to build a new generation of robust engine functionality. This book will be useful for practising automotive engineers, black belts working in the automotive industry as well as for lecturers and students since it provides a wide coverage of engine control and estimation problems, detailed and well structured descriptions of useful techniques in automotive applications and future trends and challenges in engine functionality.
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Over the past 100 years the European Automotive Industry has been repeatedly challenged by best practice. First by the United States, through the development of 'mass production' pioneered by Henry Ford and more recently by 'lean production techniques' as practised by the leading Japanese producers, particularly Toyota. It has consistently risen to these challenges and has shown it can compete and even outperform its competitors with world-class products. However, the European - dustry is now faced with growing competition and growth from new emerging low-cost countries and needs to re-define its competitive advantage to remain at the forefront of the sector. Automotive growth is driven by two factors, new m- kets and new technologies. Global competition is increasing, with technology and product differentiation becoming the most important sales factors, but with c- tinued cost pressure. Within the market the winners will be more profitable and the losers will disappear. The Automotive Industry makes a significant contribution to the socio-economic fabric of the European Union. Manufacturing output represents EURO700 billion and research and development spending EURO24 billion. European automotive suppliers number 5000 member companies and represent 5 million employees and generate EURO500 billion in revenues. These are significant figures that generate wealth and high value employment within the EU. European firms must consistently improve their competitive position to ensure that the industry does not migrate to growing new markets.
Semi-active Suspension Control provides an overview of vehicle ride control employing smart semi-active damping systems. These systems are able to tune the amount of damping in response to measured vehicle-ride and handling indicators. Two physically different dampers (magnetorheological and controlled-friction) are analysed from the perspectives of mechatronics and control. Ride comfort, road holding, road damage and human-body modelling are studied. Mathematical modelling is balanced by a large and detailed section on experimental implementation, where a variety of automotive applications are described offering a well-rounded view. The implementation of control algorithms with regard to real-life engineering constraints is emphasised. The applications described include semi-active suspensions for a saloon car, seat suspensions for vehicles not equipped with a primary suspension, and control of heavy-vehicle dynamic-tyre loads to reduce road damage and improve handling.
This book constitutes the joint refereed proceedings of the Third International Workshop on Communication Technologies for Vehicles, Nets4Cars 2011and the First International Workshop on Communication Technologies for Vehicles in the Railway Transportation, Nets4Trains 2011, held in Oberpfaffenhofen, Germany, in March 2011. The 7 full papers of the rail track and 12 full papers of the road track presented together with a keynote were carefully reviewed and selected from 13 and 21 submissions respectively. They provide an overview over the latest technologies and research in the field of intra- and inter-vehicle communication and present original research results in areas relating to communication protocols and standards, mobility and traffic models, experimental and field operational testing, and performance analysis.
Modern electric vehicles (EVs) are well suited to most people's general transport needs. Despite this, their adoption at a large scale has been grindingly slow. What are the reasons for this? Unlike most books which focus on the technical aspects of EV performance, this guide sets out the commercial and political barriers to their increased use and lays out the ways in which these barriers can be overcome. It begins by charting the rise of the internal combustion engine, and detailing the problems associated with it which are driving efforts to electrify transportation. It goes on to introduce readers to the main EV technologies and examines the key issue of energy storage and recharging infrastructure. The remaining chapters explore the cost-effectiveness of electric mobility, the differing adoption trajectories by which EVs may come to increase in prominence, and the way in which policy can be tailored to encourage this rise. The book covers industrialized and emerging economy contexts, the latter of which have the greatest opportunities and most urgent need to take the EV development route. Requiring no specialist engineering knowledge to understand and written in an engaging, accessible style, this is a valuable primer and resource for people in business, policy or study who are keen to understand, encourage and capitalize on the transition to electric mobility.
The automobile is one of the inventions that has made a decisive contribution to human mobility, and consequently it has become an inseparable part of modern human society. However, it is through this widespread use that its negative impacts on the environment have become so highly visible. Achievements in improving the ecological characteristics of the automobile are highly impressive: a modern car emits only a fraction of the amounts of noise and exhaust pollutants produced by its predecessors 30 years ago. The contributions to this book were written by experts, most of whom have been actively involved in the development of modern automobiles and their combustion engines for more than 30 years. They have participated in all phases of the ecological development of the automobile and summarize their experience and know-how in this book .
Extensive numerical methods for computing design sensitivity are included in the text for practical application and software development. The numerical method allows integration of CAD-FEA-DSA software tools, so that design optimization can be carried out using CAD geometric models instead of FEA models. This capability allows integration of CAD-CAE-CAM so that optimized designs can be manufactured effectively.
The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.
Boeing's 737 is indisputably the most popular and arguably the safest commercial airliner in the world. But the plane had a lethal flaw, and only after several disastrous crashes and years of painstaking investigation was the mystery of its rudder failure solved. This book tells the story of how engineers and scientists finally uncovered the defect that had been engineered into the plane. One of its novel features is that it portrays the complex interaction of different experts and opposing interests in investigating and solving the mystery of this single crash.
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
During the last decades completely new technologies for high speed railway vehicles have been developed. The primary goals have been to increase traction, axle load, and travelling speed, and to guarantee the safety of the passengers. However, new developments have revealed new limitations: settlement and destruction of the ballast and the subgrade lead to deterioration of the track; irregular wear of the wheels causes an increase in overall load and deterioration in passenger comfort; and damage of the running surfaces of the rail and the wheel is becoming more frequent. These problems have been investigated in the Priority Programme SPP 1015 supported by the Deutsche Forschungsgemeinschaft (DFG), with the goal of better understanding of the dynamic interaction of vehicle and track, and the long-term behavior of the components of the system. The book contains the scientific results of the programme as presented at the concluding colloquium held at University of Stuttgart, Germany, 2002.
Contained in the volume are the papers presented at an International Symposium on Advanced Technology for Design and Fabrication of Composite Materials and Structures. The Symposium was organized by Consorzio per la Ricerca e l'Educazione Permanente; Institute of Fracture and Solid Mechanics, Lehigh University, Pennsylvania USA; Dipartimento di Ingegneria Strutturale del Politecnico di Torino; and Dipartimento di Ingegneria Aeronautica e Spaziale del Politecnico di Torino. It was held at the Politecnico di Torino in Italy, May 24-28, 1993. The support from the various organizations is acknowledged as follows: * Consiglio N azionale delle Ricerche * ALENIA SP AZIO * AGUST A * CIRA * AERMACCHI * Centro Ricerche FIAT * ALENIA (formerly AERITALIA) * Collegio Costruttori Edili della Provincia di Torino As new knowledge is being accumulated on the design and fabrication of advanced composite systems in different sectors of the world, there is the need not only to exchange new ideas but also to disseminate the information from the researchers to the users. The theme of this Symposium is particularly relevant to the automobile, marine, aerospace and construction industry where the competitive edge lies on improved processing and/or manufacturing of the products. Technological advances have been and will continue to depend strongly on the development of new materials and their effective use in design. Empirical trial-and- error methods could no longer be considered economically feasible when applied to usage-specific materials such as composites.
Glare is the name given to a new material for aircraft structures developed at Delft University in the Netherlands. It consists of thin aluminium layers bonded together by adhesive containing embedded fibres and is very resistant to fatigue. This book gives the inside story of how the development of Glare took place. It took more than two decades from the first tests in Delft to the major breakthrough following the decision of Airbus to apply the material on the A380 super-jumbo. This success was achieved by a small group of people inspired by professor Boud Vogelesang, people who kept believing in the material and fought against all obstacles during the years. This book tells the story of the ups and downs and the final success of their efforts.
German Ordoliberalism and French Regulation theory, two institutionalist theories born in different national contexts, show striking convergences and complementarities. Based on an original comparison, Institutional Economics in France and Germany analyses the basic concepts, the development and the present relevance of both schools, the way they deal with the crucial methodological issue of complexity and with transformation in post-socialist Europe. It underlines the specificity and fruitfulness of these European approaches to institutional economics, often unfortunately ignored in the English-language literature. Written by leading scholars, this book is a clear presentation of both theories, with numerous illustrations and in-depth analysis of recent research developments. This theoretical, methodological and thematic comparison raises central issues in the growing field of socioeconomic and institutionalist theory.
Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given."
This collection presents 49 contributions by engineers, architects, biologists, and applied mathematicians interested in deployable structures. Aerospace structures are currently at the leading edge, and this is reflected by a larger number of contributions covering the full spectrum of concepts, simulations, testing, and working systems.
Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.
All typical and special modal and response analysis methods, applied within the frame of the design of spacecraft structures, are described in this book. It therefore addresses graduate students and engineers in the aerospace field.
Reducing the cost of space program interests people more and more nowadays due to the concerns of budget limitation and commercialization of space technology. The Proceedings of the 3rd International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations bring together papers contributed by the authors representing the research organizations, academic institutions and commercial sectors of 10 countries around the world. The papers encompass the subject areas in mission planning and operation, TT&C systems, mission control centers, and mini and small satellite support, highlighting the issues concerned by the researchers and engineers involved in a wide range of space programs and space industries.
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
This book presents the latest developments in structural dynamics with particular emphasis on the formulation of equations of motion by finite element methods and their solution using microcomputers. The book discusses the use of frequency-dependent shape functions for realistic finite element modelling, as opposed to the approximate conventional shape functions. A useful feature of the book in handling the forced vibration problem is the separation of the solution into two parts; the steady state and transient. Advanced topics such as substructure and synthesis are viewed in a modern unified manner. A complete listing of the finite element programme NATVIB used is given. |
You may like...
Wireless Power Transfer for E-Mobility…
Mauro Feliziani, Tommaso Campi, …
Paperback
R3,232
Discovery Miles 32 320
Michigan's C. Harold Wills - The Genius…
Alan Naldrett, Lynn Lyon Naldrett
Paperback
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,041
Discovery Miles 40 410
|