![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
This is the first ever book that provides a comprehensive coverage of automotive control systems. The presentation of dynamic models in the text is also unique. The dynamic models are tractable while retaining the level of richness that is necessary for control system design. Much of the mateiral in the book is not available in any other text.
These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the "hot topics" addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the conference. Many of us feel that our joint interest in complex systems, where many simple agents, be it vehicles or particles, give rise to surprising and fascin- ing phenomena, is ample justification for bringing these communities together: Traffic and Granular Flow has fostered cooperation and friendship across the scientific disciplines.
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book."
The present book Essential Spaceflight Dynamics and Magnetospherics
describes, in the first instance, some of the key aspects of
celestial mechanics and spaceflight dynamics. It begins with
classical two and three body problems illustrative of the aesthetic
aspects of applying analytical methods of investigation to
celestial mechanics. Then, osculating orbital elements are
introduced as well as analysis techniques sufficient to evaluate
the influence of various disturbing forces on spacecraft. Next a
theory of manoeuvres is outlined and the methodology of making
interplanetary trajectory corrections. Ideas involving various
approaches to orbital element determinations using measured data
are also considered. The forces applied to a spacecraft can result
in the development of torques that influence attitude motion and
the effects of the most important of these are described in terms
of equilibrium positions, periodic motions, steady-state and
transient motions. Also considered is the problem of attitude
control of a spacecraft using active and/or passive methods of
orientation and stabilization. In addition, a more advanced
treatment of the development of attitude control systems is
provided.
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
Over the past 30 years, leading experts in turbomachinery unsteady aerodynamics, aer- coustics, and aeroelasticity from around the world have gathered to present and discuss recent advancements in the ?eld. The ?rst International Symposium on Unsteady Aero- namics, Aeroacoustics, and Aeroelasticity of Turbomachines (ISUAAAT) was held in Paris, France in 1976. Since then, the symposium has been held in Lausanne, Switzerland (1980), Cambridge, England (1984), Aachen, Germany (1987), Beijing, China (1989), Notre Dame, Indiana(1991), Fukuoka, Japan(1994), Stockholm, Sweden(1997), andLyon, France(2000). The Tenth ISUAAAT was held September 7-11, 2003 at Duke University in Durham, North Carolina. This volume contains an archival record of the papers presented at that meeting. The ISUAAAT, held roughly every three years, is the premier meeting of specialists in turbomachinery aeroelasticity and unsteady aerodynamics. The Tenth ISUAAAT, like its predecessors, provided a forum for the presentation of leading-edge work in turbomachinery aeromechanics and aeroacoustics of turbomachinery. Not surprisingly, with the continued development of both computer algorithms and computer hardware, the meeting featured a number of papers detailing computational methods for predicting unsteady ?ows and the resulting aerodynamics loads. In addition, a number of papers describing interesting and very useful experimental studies were presented. In all, 44 papers from the meeting are published in this v
During the last decades completely new technologies for high speed railway vehicles have been developed. The primary goals have been to increase traction, axle load, and travelling speed, and to guarantee the safety of the passengers. However, new developments have revealed new limitations: settlement and destruction of the ballast and the subgrade lead to deterioration of the track; irregular wear of the wheels causes an increase in overall load and deterioration in passenger comfort; and damage of the running surfaces of the rail and the wheel is becoming more frequent. These problems have been investigated in the Priority Programme SPP 1015 supported by the Deutsche Forschungsgemeinschaft (DFG), with the goal of better understanding of the dynamic interaction of vehicle and track, and the long-term behavior of the components of the system. The book contains the scientific results of the programme as presented at the concluding colloquium held at University of Stuttgart, Germany, 2002.
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.
The 3rd edition of this practical, hands-on book discusses the range of launch vehicles in use today throughout the world, and includes the very latest details of some of the advanced propulsion systems currently being developed. The author covers the fundamentals of the subject, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. The didactic value of the early chapters on the basics of rocket propulsion, by re-working the derivations and updating the examples will be enhanced. The 3rd edition will stick to the same principle of providing a serious exposition of the principles and practice of rocket propulsion, but from the point of view of the user and enquirer who is not an engineering specialist. Most chapters will remain substantially the same as the second edition; they will be updated where necessary and errata corrected. In particular the new chapters added for the second edition, on Electric and Nuclear propulsion will remain substantially the same. In addition to general revision, updating and the correction of errata on all chapters, this updated edition will detail a number of new developments in the field Chapter 3 on Liquid propellant rocket engines will have new sections on air breathing engines and on new engines and propellants for the human exploration program. Chapter 8 will now de-emphasize the SSTO concepts, not longer seen as promising, and include new sections on variable thrust engines, again for human exploration. Other new developments following the announcement and subsequent development of NASA s new man-rated launcher, the ARES, and its Constellation vehicle set. Also covered will be sub-orbital space tourist vehicles and the new rocket engines, which have been developed for them. A new chapter on man-rated launchers and their important characteristics will detail this. New interest in Lunar exploration and the need to supply Lunar bases exposes the requirement for high efficiency engines for Lunar transportation and storage of high energy propellants like liquid oxygen and liquid hydrogen. New engines designed for in-space transportation and Lunar landing and departure will be added to the relevant chapters."
The mono graph contains 8 chapters, and their contents cover all principal aspects of the problem: 1. Introduction and brief his tory ofthe radiation problem and background information ofradiation hazard in the near-Earth and interplanetary space. 2. General description of radiation conditions and main sources of charged partic1es in the Earth's environment and interplanetary space, effects of space environment on spacecraft. 3. Basic information about physical conditions in space and main sources of charged particles in the Earth's environment and interplanetary space, in the context of "Space W eather" monitoring and prediction. 4. Trapped radiation belts of the Earth (ERB): theory of their origin, spatial and temporal dynamics, and experimental and statistical models. 5. Galactic cosmic rays (GCR): variations of energetic, temporal and spatial characteristics, long-term modulation, and anomalous cosmic ray (ACR) component, modeling oftheir dynamics. 6. Production of energetic particles (SEPs) at/ne ar the Sun: available databases, acceleration, propagation, and prediction of individual SEP event, statistical models of solar cosmic rays (SCR). 7. Existing empirical techniques of estimating, prediction and modeling of radiation hazard, methodical approaches and constraints, some questions of changes in the Earth's radiation environment due to changes of the solar activity level. 8. Unresolved problems of radiation hazard prediction and spacecraft protection, radiation experiments on board the spacecraft, estimating of radiation conditions during interplanetary missions. Space does not allow us to explain every time the solar-terrestrial and radiation physics nomencIature used in current English-language literature.
Every one relies on some kind of transportation system nearly every day. Go ing to work, shopping, dropping children at school and many other cultural or social activities imply leaving home, and using some form of transportation, which we expect tobe eflicient and reliable. Of course, efliciency and reliabil ity do not occur by chance, but require careful and often relatively complex planning by transportation system managers, both in the public and private sectors. It has long been recognized that mathematics, and, more specifically, op erations research is an important tool of this planning process. However, the range of skills required to cover both fields, even partially, is very large, and the opportunities to gather people with this very diverse expertise are too few. The organization of the NATO Advanced Studies Institute on "Opera tions Research and Decision Aid Methodologies in Traflic and Transportation Management" in March 1997 in Balatonfured, Hungary, was therefore more than welcome and the group of people that gathered for a very studious two weeks on the shores of the beautiful lake Balaton did really enjoy the truly multidisciplinary and high scientific level of the meeting. The purpose of the present volume is to report, in a chronological order, the various questions that were considered by the lecturers and the' students at the institute. After a general introduction to the topic, the first week focused on issues related to traflic modeling, mostly in an urban context."
Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.
Mobility is a prime need of mankind. It is the basis not only of economical and technical but also of cultural progress. Many questions arise with respect to the development and the problems of mobility in the 21st century. This book presents the results elaborated by a project team consisting of students of the "Bayrische Elite-Akademie." They applied themselves to four main topics: - Bimodal transport system. - Mobility and transport in agglomoration areas. - Analogies of physical and virtual traffic. - How communication technologies influence the future of mobility. The book is of interest to both the industrial and the acadamic community and can also be used by students. It is directed at the group of people interested in future traffic policy in general and in traffic engineering in particular.
This edited collection of essays from world-leading academic and industrial authors yields insight into all aspects of reverse engineering. Methods of reverse engineering analysis are covered, along with special emphasis on the investigation of surface and internal structures. Frequently-used hardware and software are assessed and advice given on the most suitable choice of system. Also covered is rapid prototyping and its relationship with successful reverse engineering.
This book shows readers new ways to compensate for disturbances in control systems prolonging the intervals between time-consuming and/or expensive fault diagnosis procedures, keeping them up to date in the increasingly important field of adaptive control.
This crucial volume arose out of the success of the first workshop of the Cyprus Institute held in 2005. The proceedings present an overview of the implications of climate change for the eastern Mediterranean and the impact of climate change response on regional economic activity, particularly in the hydrocarbon industry. This book is aimed not just at scientists and researchers but should command a much wider audience, including policy makers and politicians.
Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors background in automotive technology gives the work added authority as a vital element of future planning.
A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
A new discipline is said to attain maturity when the subject matter takes the shape of a textbook. Several textbooks later, the discipline tends to acquire a firm place in the curriculum for teaching and learning. Computer Aided Engineering Design (CAED), barely three decades old, is interdisciplinary in nature whose boundaries are still expanding. However, it draws its core strength from several acknowledged and diverse areas such as computer graphics, differential geometry, Boolean algebra, computational geometry, topological spaces, numerical analysis, mechanics of solids, engineering design and a few others. CAED also needs to show its strong linkages with Computer Aided Manufacturing (CAM). As is true with any growing discipline, the literature is widespread in research journals, edited books, and conference proceedings. Various textbooks have appeared with different biases, like geometric modeling, computer graphics, and CAD/CAM over the last decade. This book goes into mathematical foundations and the core subjects of CAED without allowing itself to be overshadowed by computer graphics. It is written in a logical and thorough manner for use mainly by senior and graduate level students as well as users and developers of CAD software. The book covers (a) The fundamental concepts of geometric modeling so that a real understanding of designing synthetic surfaces and solid modeling can be achieved. (b) A wide spectrum of CAED topics such as CAD of linkages and machine elements, finite element analysis, optimization. (c) Application of these methods to real world problems.
This volume offers of the EU-funded 5th Framework project, FLOMANIA (Flow Physics Modelling - An Integrated Approach). The book presents an introduction to the project, exhibits partners' methods and approaches, and provides comprehensive reports of all applications treated in the project. A complete chapter is devoted to a description of turbulence models used by the partners together with a section on lessons learned, accompanied by a comprehensive list of references.
This book was born from curiosity. To begin with, it was the curiosity of an economist who studied in the 60's in an environment which has subsequently developed from national into global economics. Who has to recognize that politicians, scholars and large segments of society oblivious to supranational authorities and e- nomic globalization forces continue to labour under the notion that they are still fully autonomous and sovereign when shaping national economic policy. And pretend as though their own national state were still the "m- ter in its own house" that despite unbridled market economics could c- tinue to dictate to the economy and companies how to live and in which "rooms." All that has become fiction. The laws of globalization diminish the - noeuvring space for shaping national economic policy. Even if many folks today don't want to hear it: The issue is no longer achieving what is soc- politically desirable for the own society but rather the optimal adaptation of society and social benefits to the politically practicable.
"Optimal Design of Complex Mechanical Systems" presents the foundations and practical application of multi-objective optimization methods to Vehicle Design Problems with an extensive overview of examples. The first part provides an introduction and a general theoretical information about the optimization of complex mechanical systems and multi-objective optimization methods. Several presented applications such as the global approximation approach are brand new in literature and extensively exposed the first time in this book. The second Part of the book shows some examples of the application of the proposed methods to the solution of real vehicle design problems.
The current economic crisis is cutting the automotive sector to the quick. Public authorities worldwide are now faced with requests for providing loans and accepting guarantees and even for putting large automotive companies under state control. Assessing the long-term benefits of such help and wei- ing the needs of different sectors against each other poses a major challenge for the national policies. Given the upcoming change of customer preferences and state regulations towards safety, sustainability and comfort of a car, the automotive industry is particularly called to prove its ability to make nec- sary innovations available in order to accelerate its pace to come out of the crisis. Consequently the Green Car is assuming a prominent role in the current debate. Various power train concepts are currently under discussion for the Green Car including extremely optimised internal combustion engines, hybrid drives and battery-electric traction. Electrical cars are the most appealing option because they are free of local emissions and provide the opportunity to use primary energy from sources other than crude oil for transport. Well to wheel analysis show that their green-house gas emissions can be rated negligibly small if electricity from renewable sources like wind and solar is used.
This book provides techniques to produce robust, stable and useable solutions to problems of H-infinity and H2 control in high-performance, non-linear systems for the first time. The book is of importance to control designers working in a variety of industrial systems. Case studies are given and the design of nonlinear control systems of the same caliber as those obtained in recent years using linear optimal and bounded-norm designs is explained.
Ceramic matrix composites (CMCs) are at the forefront of advanced materials technology because of their light weight, high strength and toughness, high temperature capabilities, and graceful failure under loading. During the last 25 years, tremendous progress has been made in the development and advancement of CMCs under various research programs funded by the U.S. Government agencies: National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and Department of Energy (DOE). Ceramic composites are considered as enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, and space structures. CMCs would also find applications in advanced aerojet engines, stationary gas turbines for electrical power generation, heat exchangers, hot gas filters, radiant burners, heat treatment and materials growth furnaces, nuclear fusion reactors, automobiles, biological implants, etc. Other applications of CMCs are as machinery wear parts, cutting and forming tools, valve seals, high precision ball bearings for corrosive environments, and plungers for chemical pumps. Potential applications of various ceramic composites are described in individual chapters of the present handbook. Handbook of Ceramic Composites is different from the other books available on this topic. Here, a ceramic composite system or a class of composites has been covered in a separate chapter, presenting a detailed description of processing, properties, and applications. Each chapter is written by internationally renowned researchers in the field. The handbook is organized into five sections: Ceramic Fibers, Non-oxide/Non-oxide Composites, Non-oxide/Oxide Composites, Oxide/Oxide Composites, and Glass and Glass-Ceramic Composites. This handbook should be a valuable source of information for scientists, engineers, and technicians working in the field of CMCs, and also for designers to design parts and components for advanced engines, and various other industrial applications. |
You may like...
International migration outlook 2021
Organisation for Economic Cooperation and Development
Paperback
R3,504
Discovery Miles 35 040
Politics and the Environment - From…
Graham Smith, James Connelly, …
Paperback
(1)R1,628 Discovery Miles 16 280
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
Fractal Functions, Fractal Surfaces, and…
Peter R. Massopust
Hardcover
R1,963
Discovery Miles 19 630
|