![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Agriculture & farming > Crop husbandry > General
A deficiency of one or more of the eight plant micronutrients (boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc) will adversely affect both the yield and quality of crops. Micronutrient deficiencies in crops occur in many parts of the world, at various scales (from one to millions of hectares), but differences in soil conditions, climate, crop genotypes and management, result in marked variations in their occurrence. The causes, effects and alleviation of micronutrient deficiencies in crops in: Australia, India, China, Turkey, the Near East, Africa, Europe, South America and the United States of America, are covered, and these are representative of most of the different conditions under which crops are grown anywhere in the world. Links between low contents of iodine, iron and zinc (human micronutrients) in staple grains and the incidence of human health problems are discussed, together with the ways in which the micronutrient content of food crops can be increased and their bioavailability to humans improved. Detailed treatment of topics, such as: soil types associated with deficiencies, soil testing and plant analysis, field experiments, innovative treatments, micronutrients in the subsoil, nutrient interactions, effects of changing cropping systems, micronutrient budgets and hidden deficiencies in various chapters provides depth to the broad coverage of the book. This book provides a valuable guide to the requirements of crops for plant micronutrients and the causes, occurrence and treatment of deficiencies. It is essential reading for many agronomy, plant nutrition and agricultural extension professionals.
The Asian beans and grams, the species of Vigna (subgenus Ceratotropis), include several legumes that are an essential component in the diets of a large proportion of Asia's population, and interest in these legumes is growing as ethnic cuisine spreads worldwide. However, this important group of legumes is little known compared to the closely related Phaseolus beans and soybean. That deficiency is addressed for the first time in this fully illustrated comprehensive conservation, genetics, taxonomic, and agricultural monograph on the genetic resources of the Asian Vigna. The book deals with the phylogeny of the group from the perspectives of morphological and molecular analyses, ex situ and in situ conservation, eco-geographical analyses, and research. In addition, morphological descriptions, keys, and eco-geographic details of each species in the group are provided. This genetic resources handbook and guide to the Asian Vigna will be a valuable reference for agriculturists, conservationists, taxonomists, other scientists, and students interested in the legumes and plant genetic resources.
Finalist, Helen Bernstein Book Award for Excellence in Journalism In the tradition of Eric Schlosser's Fast Food Nation, a groundbreaking global investigation into the industry ravaging the environment and global health--from the James Beard Award-winning journalist Over the past few decades, palm oil has seeped into every corner of our lives. Worldwide, palm oil production has nearly doubled in just the last decade: oil-palm plantations now cover an area nearly the size of New Zealand, and some form of the commodity lurks in half the products on U.S. grocery shelves. But the palm oil revolution has been built on stolen land and slave labor; it's swept away cultures and so devastated the landscapes of Southeast Asia that iconic animals now teeter on the brink of extinction. Fires lit to clear the way for plantations spew carbon emissions to rival those of industrialized nations. James Beard Award-winning journalist Jocelyn C. Zuckerman spent years traveling the globe, from Liberia to Indonesia, India to Brazil, reporting on the human and environmental impacts of this poorly understood plant. The result is Planet Palm, a riveting account blending history, science, politics, and food as seen through the people whose lives have been upended by this hidden ingredient. This groundbreaking work of first-rate journalism compels us to examine the connections between the choices we make at the grocery store and a planet under siege.
The status of crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. This volume is devoted to fruit, trees and beverage crops. It presents the current knowledge of plant biotechnology as an important tool for crop improvement and includes up-to-date methodologies.
Haploid plants have the gametophytic number of chromosomes. They are of great importance, especially in studies on the induction of muta tions and also for the production of homozygous plants, they are needed in large numbers. The conventional methods employed by plant breeders for their production are cumbersome, time-consuming, laborious and rather inefficient. Sometimes it may take years to produce a pure line. However, with the introduction of in vitro techniques, especially anther culture for the induction of androgenesis, it has become increasingly evi dent that these methods considerably accelerate the production of haploids for plant breeding programs. During the last decade, in vitro-produced haploids have been incor porated into breeding programs of many agricultural crops, and positive results have been obtained especially with rice, wheat, potato, barley, maize, asparagus, sunflower, brassica, tobacco, etc. Among these, rice and wheat are the best examples in which a number of improved varieties have been released. In wheat, the breeding cycle can be shortened by three or four generations when the pollen haploid breeding method is used instead of conventional cross-breeding. The release of the wheat varieties Jinghua 1 and Florin is a typical example of what can be achieved with other crops. Taking these developments into considera tion, the present volume, Haploids in Crop Improvement I, was compil ed."
Forage and turf are the backbone of sustainable agriculture and contribute extensively to the world economy. The fast-paced advancement of cellular and molecular biology provides novel methods to accelerate or complement conventional breeding efforts. This book contains the most comprehensive reviews on the latest development in applications of molecular techniques for the improvement of forage grasses, forage legumes and turf grasses. Detailed accounts and future opportunities in molecular breeding of forage and turf, from gene discovery to development of improved cultivars, are described in the book. Almost all relevant areas are explored in detail, including tolerance to biotic and abiotic stresses; flowering control; plant-symbiont relations; breeding for animal, human and environmental welfare; molecular markers; transgenics; bioinformatics; population genetics; genomics of the model legume M. truncatula; field testing and risk assessment as well as intellectual property rights. This book will be of interest to researchers in both academia and industry who are involved in forage and turf improvement. It will be especially important to breeders, molecular biologists, geneticists, physiologists and agronomists.
The Monograph deals with the conception, planning, implementation, results and conclusions of the International Witches' Broom Project (IWBP), which was set up in 1985 with the aim of producing an economic management system for witches' broom disease of cocoa. The contributions of the various sponsors, and the roles played by the participating organizations and scientists are described in the introductory chapter. Chapter 2 provides a review of what was, and what was not known from published literature about the cocoa witches' broom pathosystem in 1989. The scope of the project and the approaches used are covered in Chapter 3, while Chapters 4 to 13 report on the field studies themselves in detail. The recent appearance of witches' broom in the important cocoa area of Bahia in Brazil is described in Chapter 14, before disease management recommendations are summarised and future prospects considered in the closing chapters. The many man-years of field research in the IWBP in a total of six countries generated much useful information which was analyzed both in the individual countries and collectively. Even with a document of this size, certain information and analyses with less direct relevance to disease management had to be omitted. It is expected that more detailed treatments of certain aspects will emerge in scientific papers, and further analyses will be undertaken."
Plant Stress Mitigators: Types, Techniques and Functions presents a detailed contextual discussion of various stressors on plant health and yield, with accompanying insights into options for limiting impacts using chemical elicitors, bio-stimulants, breeding techniques and agronomical techniques such as seed priming, cold plasma treatment, and nanotechnology, amongst others. The book explores the various action mechanisms for enhancing plant growth and stress tolerance capacity, including nutrient solubilizing and mobilizing, biocontrol activity against plant pathogens, phytohormone production, soil conditioners, and many more unrevealed mechanisms. This book combines research, methods, opinion, perspectives and reviews, dissecting the stress alleviation action of different plant stress mitigators on crops grown under optimal and sub-optimal growing conditions (abiotic and biotic stresses).
The future of agriculture greatly depends on our ability to enhance productivity without sacrificing long-term production potential. The application of microorganisms, such as the diverse bacterial species of plant growth promoting rhizobacteria (PGPR), represents an ecologically and economically sustainable strategy. The use of these bio-resources for the enhancement of crop productivity is gaining importance worldwide. Bacteria in Agrobiology: Crop Productivity focus on the role of beneficial bacteria in crop growth, increased nutrient uptake and mobilization, and defense against phytopathogens. Diverse group of agricultural crops and medicinal plants are described as well as PGPR-mediated bioremediation leading to food security.
Neglected and Underutilized Crops: Future Smart Food explores future food crops with climate resilience potential. Sections cover their botany, nutritional significance, global distribution, production technology, and tolerance to biotic and abiotic stresses of neglected and underutilized crops. By simply changing species in a crop rotation system, the cycle of some pests and diseases is disrupted and probabilities of infestations are reduced. Finally, the book provides case studies that highlight where the adaptation of crops to local environments, especially with regard to climate change, have been successful. These crops can help make agricultural production systems more resilient to climate change. Although a few books on neglected and underutilized crops are available, this comprehensive book covers the full scope of crop husbandry, nutritional significance and global distribution.
Food security and environmental conservation are two of the greatest challenges facing the world today. It is predicted that food production must increase by at least 70% before 2050 to support continued population growth, though the size of the world's agricultural area will remain essentially unchanged. This updated and thoroughly revised second edition provides in-depth coverage of the impact of environmental conditions and management on crops, resource requirements for productivity and effects on soil resources. The approach is explanatory and integrative, with a firm basis in environmental physics, soils, physiology and morphology. System concepts are explored in detail throughout the book, giving emphasis to quantitative approaches, management strategies and tactics employed by farmers, and associated environmental issues. Drawing on key examples and highlighting the role of science, technology and economic conditions in determining management strategies, this book is suitable for agriculturalists, ecologists and environmental scientists.
This book presents a flavour of activities focussed on the need for sustainably produced biomass to support European strategic objectives for the developing bioeconomy. The chapters cover five broad topic areas relating to the use of perennial biomass crops in Europe. These are: 'Bioenergy Resources from Perennial Crops in Europe', 'European Regional Examples for the Use of Perennial Crops for Bioenergy', 'Genotypic Selection of Perennial Biomass Crops for Crop Improvement', 'Ecophysiology of Perennial Biomass Crops' and 'Examples of End-Use of Perennial Biomass Crops'. Two major issues relating to the future use of biomass energy are the identification of the most suitable second generation biomass crops and the need to utilise land not under intensive agricultural production, broadly referred to as 'marginal land'. The two main categories of plants that fit these needs are perennial rhizomatous grasses and trees that can be coppiced. The overarching questions that are addressed in the book relate to the suitability of perennial crops for providing feedstocks for a European bioeconomy and the need to exploit environments for biomass crops which do not compete with food crops. Bioenergy is the subject of a wide range of national and European policy measures. New developments covered are, for example, the use of perennial grasses to produce protein for animal feed and concepts to use perennial biomass crops to mitigate carbon emissions through soil carbon sequestration. Several chapters also show how prudent selection of suitable genotypes and breeding are essential to develop high yielding and sustainable second generation biomass crops which are adapted to a wide range of unfavourable conditions like chilling and freezing, drought, flooding and salinity. The final chapters also emphasise the need to be kept an eye out for potential new end-uses of perennial biomass crops that will contribute further to the developing bioeconomy.
This book aims to assess, evaluate and critically analyze the methods that are currently available for a judicious pest management in durable food. It presents and analyzes a vast amount of methods that are already in use in "real world" industrial applications. After the phase-out of methyl bromide, but also the withdrawal of several insecticides and the continuously updated food safety regulations, there is a significant knowledge gap on the use of risk-reduced, ecologically-compatible control methods that can be used with success against stored-product insect species and related arthropods. The importance of integrated pest management (IPM) is growing, but the concept as practiced for stored products might differ from IPM as historically developed for field crops. This book discusses a wide variety of control strategies used for stored product management and describes some of the IPM components. The editors included chemical and non-chemical methods, as both are essential in IPM. They set the scene for more information regarding emerging issues in stored product protection, such as emerging, alien and invasive species as threats for global food security, as well as the importance of stored-product arthropods for human health. Finally, the analysis of the economics of stored product protection is presented, from theory to practice.
This book provides insights into the genetics and the latest advances in genomics research on the common bean, offering a timely overview of topics that are pertinent for future developments in legume genomics. The common bean (Phaseolus vulgaris L.) is the most important grain legume crop for food consumption worldwide, as well as a model for legume research, and the availability of the genome sequence has completely changed the paradigm of the ongoing research on the species. Key topics covered include the numerous genetic and genomic resources, available tools, the identified genes and quantitative trait locus (QTL) identified, and there is a particular emphasis on domestication. It is a valuable resource for students and researchers interested in the genetics and genomics of the common bean and legumes in general.
The plant species that humans rely upon have an extended family of wild counterparts that are an important source of genetic diversity used to breed productive crops. These wild and weedy cousins are valuable as a resource for adapting our food, forage, industrial and other crops to climate change. Many wild plant species are also directly used, especially for revegetation, and as medicinal and ornamental plants. North America is rich in these wild plant genetic resources. This book is a valuable reference that describes the important crop wild relatives and wild utilized species found in Canada, the United States and Mexico. The book highlights efforts taken by these countries to conserve and use wild resources and provides essential information on best practices for collecting and conserving them. Numerous maps using up-to-date information and methods illustrate the distribution of important species, and supplement detailed description on the potential value these resources have to agriculture, as well as their conservation statuses and needs. There is broad recognition of the urgent need to conserve plant diversity; however, a small fraction of wild species is distinguished by their potential to support agricultural production. Many of these species are common, even weedy, and are easily overshadowed by rare or endangered plants. Nevertheless, because of their genetic proximity to agriculturally important crops or direct use, they deserve to be recognized, celebrated, conserved, and made available to support food and agricultural security. This comprehensive two-volume reference will be valuable for students and scientists interested in economic botany, and for practitioners at all levels tasked with conserving plant biodiversity.
The field of plant breeding has grown rapidly in the last decade with breakthrough research in genetics and genomics, inbred development, population improvement, hybrids, clones, self-pollinated crops, polyploidy, transgenic breeding and more. This book discusses the latest developments in all these areas but explores the next generation of needs and discoveries including omics beyond genomics, cultivar seeds and intellectual and property rights. This book is a leading-edge publication of the latest results and forecasts important areas of future needs and applications.
Vegetation Dynamics and Crop Stress: An Earth-Observation Perspective focuses on vegetation dynamics and crop stress at both the regional and country levels by using earth observation (EO) data sets. The book uniquely provides a better understanding of natural vegetation and crop failure through geo-spatial technologies. This book covers biophysical control of vegetation, deforestation, desertification, drought, and crop-water efficiency, as well as the application of satellite-derived measures from optical, thermal, and microwave domains for monitoring and modeling crop condition, agricultural drought, and crop health in contrasting monsoon/weather episodes.
Advances in Agronomy, Volume 176, the latest release in this leading reference on agronomy, contains a variety of updates and highlights new advances in the field. Each chapter is written by an international board of authors.
Medicinal Agroecology: Reviews, Case Studies and Research Methodologies presents information on applications of 'green therapies' in restoration towards global sustainability. These practices connect the world of medicinal plants with ecologic farming practice creating a compassionate socio-political worldview and heartfelt scientific research towards food sovereignty and a healthier future on planet Earth. The book communicates benefits of using plant-based solutions to manage the challenges of unsustainable practices in human healthcare, veterinary medicine, agriculture, forestry, and water management. The contributions introduce advances around plants and their active components to potentially treat disease, regulate dysfunction, and balance ecosystems. These practices are explored in further depth through three sections - I. POLICIES & FRAMEWORKS, II. INSIGHTS & OVERVIEWS, III. CASE STUDIES & RESEARCH METHODS. Edited by Immo Fiebrig, Medicinal Agroecology: Reviews, Case Studies and Research Methodologies appeals to those in various disciplines including agriculture and agroecology, healthcare, environmental sciences, and veterinary medicine.
Plant breeders have used mutagenic agents to create variability for their use in crop improvement. However, application of mutagenic agents has its own drawbacks, such as non-specificity and random nature, simultaneous effect on large numbers of genes, and induction of chromosomal aberrations. To overcome these limitations, several genome editing systems have been developed with the aid of cutting-edge technology rooted in the expertise of several research fields. Molecular Plant Breeding and Genome Editing Tools for Crop Improvement is a pivotal reference source that provides an interdisciplinary approach to crop breeding through genetics. Featuring coverage of a broad range of topics including software, molecular markers, and plant variety identification, this book is ideally designed for agriculturalists, biologists, engineers, advocates, policymakers, researchers, academicians, and students.
Genetic erosions in plant cell cultures, especially in chromosome number and ploidy level, have now been known for over 25 years. Until the mid -1970ssuch changes were consideredundesirable and thereforediscarded because the main emphasis wason clonal propagation and genetic stability of cultures. However, since the publication on somaclonal variation by Larkin and Scowcroft (1981) there has been a renewed interest to utilize these in vitro obtained variations for crop improvement. Studies conduc- ted during the last decade have shown that callus cultures, especially on peridical subculturing over an extended period of time, undergo morpho- logical and genetic changes, i. e. polyploidy, aneuploidy, chromosome breakage, deletions, translocations, gene amplification, inversions, muta- tions, etc. In addition, there are changes at the molecular and biochemical levelsincluding changes in the DNA, enzymes,proteins, etc. Suchchanges are now intentionally induced, and useful variants are selected. For instance in agricultural crops such as potato, tomato, tobacco, maize, rice and sugarcane, plants showing tolerance to a number of diseases, viruses, herbicides and salinity, have been isolated in cell cultures. Likewise induction of male sterility in rice, and wheat showing various levels of fer- tility and gliadin, have been developed in vitro. These academic excercises open new avenues for plant breeders and pathologists. Another area of tremendous commercial importance in the pharmaceuti- cal industry is the selection of cell lines showing high levels of medicinal and industrial compounds. Already high shikonin containing somaclones in Lithospermum are being used commercially.
In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering--enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins. Genome Engineering for Crop Improvement provides an up-to-date view of the use of genome editing for crop bio-fortification, improved bioavailability of minerals and nutrients, and enhanced hypo-allergenicity and hypo-immunogenicity. This volume examines a diversity of important topics including mineral and nutrient localization, metabolic engineering of carotenoids and flavonoids, genome engineering of zero calorie potatoes and allergen-free grains, engineering for stress resistance in crop plants, and more. Helping readers deepen their knowledge of the application of genome engineering in crop improvement, this book: Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement is an essential resource for academics, scientists, researchers, agriculturalists, and students of plant molecular biology, system biology, plant biotechnology, and functional genomics.
Genetic engineering is a powerful tool for crop improvement. Crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. Transgenic Crops IV deals with cereals, vegetables, root crops, herbs and spices. Section I is an introductory chapter on the impact of plant biotechnology in agriculture. Section II focuses on cereals (rice, wheat, maize, rye, pearl millet, barley, oats), while Section III is directed to vegetable crops (tomato, cucumber, eggplant, lettuce, chickpea, common beans and cowpeas, carrot, radish). Root crops (potato, cassava, sweet potato, sugar beet) are included in Section IV, with herbs and spices (sweet and hot peppers, onion, garlic and related species, mint) in Section V. This volume is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, genetics and both plant cell and molecular biology.
OY (])PONEOYLI TOIA YTA IIOAAOI OKOEOJII Many fail to grasp what they have seen, and cannot judge what they have learned, ErKYPEOYLI OYL1E MA (R)ONTEE ITINOEKOYIT although they tell themselves they know. EQYTOJII L1E L10KEOYLI Heraclitus of Ephesus, 500 BC " ... everyone that is not speckled and C~T~v: N,;~, 'T,ji~ ,~~~N ,tuN '= spotted among the goats and brown among the sheep, that shall be counted ~~N N,n =,~, c~w=== c,m stolen with me." Genesis Chapter 30 From Heraclitus of Ephesus and later philosophers, we can deduce that observation of natural phenomena, even when keen and accurate, will not result in meaningful knowledge unless combined with analysis of the mind; just as analysis of the mind without acquaintance with natural phenomena will not suffice to grasp the perceivable world. Only familiarity with phenomena combined with mental analysis will lead to additional knowledge. The citation from Genesis, Chapter 30, is part of an unusual story. It tells how Jacob received, as payment for his service to Laban, the bulk of Laban's herds. By agreement, Jacob was to receive "only" the newborn speckled and spotted goats and the newborn brown sheep that differed completely from their parents. Did Jacob know that there was instability (transposable elements?) in the pigmentation of Laban's herd? It is reasonable to assume that Jacob combined his keen observation with analysis of his mind in order to predict the outcome: most of the newborns were indeed speckled, spotted or brown. |
![]() ![]() You may like...
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,152
Discovery Miles 31 520
Working with Dynamic Crop Models…
Daniel Wallach, David Makowski, …
Hardcover
Developing Sustainable and Health…
Marianna Rakszegi, Maria Papageorgiou, …
Paperback
R5,146
Discovery Miles 51 460
|