![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry > General
Shows the importance of plant tissue culture and transgenic technology on plant biology research and its application to agricultural production Provides insight into what may lie ahead in this rapidly expanding area of plant research and development Contains contributions from major leaders in the field of plant tissue culture and transgenic technology
Soil and crop sensing is a fundamental component and the first important step in precision agriculture. Unless the level of soil and crop variability is known, appropriate management decisions cannot be made and implemented. In the last few decades, various ground-based sensors have been developed to measure spatial variability in soil properties and nutrients, crop growth and yield, and pest conditions. Remote sensing as an important data collection tool has been increasingly used to map soil and crop growth variability as spatial, spectral and temporal resolutions of image data have improved significantly in recent years. While identifying spatial variability of soil and crop growth within fields is an important first step towards precision management, using that variability to formulate variable rate application plans of farming inputs such as fertilizers and pesticides is another essential step in precision agriculture.The purpose of this book is to present the historical, current and future developments of soil and crop sensing technologies with fundamentals and practical examples. The first chapter gives an overview of soil and crop sensing technologies for precision crop production. The next six chapters provide details on theories, methods, practical applications, as well as challenges and future research needs for all aspects of soil and crop sensing. The last two chapters show how soil and crop sensing technologies can be used for plant phenotyping and precision fertilization. The chapters are written by some of the world's leading experts who have contributed significantly to the developments of precision agriculture technologies, especially in the area of soil and crop sensing. They use their knowledge, experiences, and successful stories to present informative and up-to-date information on relevant topics. Therefore, this book is an invaluable addition to the literature and can be used as a reference by scientists, engineers, practitioners, and college students for the dissemination and advancement of precision agriculture technologies for practical applications.
There is increasing competition for water resources in the face of declining aquifer reserves and increasing risk in many areas of drought related to climate change. At the same time poor water management is damaging agriculture with problems such as salinization, waterlogging, erosion and run-off. This volume summarises the wealth of research on understanding and better management of water resources for agriculture. Part 1 reviews fundamental issues such as plant water use and soil water retention. Part 2 discusses ways of mapping and monitoring groundwater and surface water resources whilst Part 3 covers other sources such as rain and floodwater, waste and brackish water. Part 4 surveys developments in irrigation techniques such as drip irrigation and fertigation. The final sections in the book discuss ways of using water resources more efficiently such as site-specific and deficit irrigation techniques. With its distinguished editor and international team of expert authors, this wlll be a standard reference for agronomists, scientists involved in water and irrigation science as well as government and non-governmental organisations responsible for agriculture and water resource management.
Genetic erosion, that is, the loss of native plant and genetic diversity has been exponential from the Mediterranean Basin through the Twentieth century. This careless eradication of species and genetic diversity as a result of human activities from a 'hot-spot' of diversity threatens sustainable agriculture and food security for the temperate regions of the world. Since the early 1900s there has been a largely ad hoc movement to halt the loss of plant diversity and enhance its utilisation. The Convention on Biological Diversity and Food and Agriculture Organisation of the United Nations International Undertaking on Plant Genetic Resources, both highlight the need to improve conservation methodologies and enhance utilisation techniques. It has been argued that the most important component of biodiversity is the genetic diversity of crop and forage species used to feed humans and livestock. These cultivated and related wild species provides the raw material for further selection and improvement. Leguminosae species are of major economic importance (peas, chickpeas, lentils and faba beans, as well as numerous forage species) and provide a particularly rich source of protein for human and animal foods. Their distribution is concentrated in the Mediterranean region and therefore the improvement of their conservation and use in the region is critical. This text is designed to help ensure an adequate breadth of legume diversity is conserved and to help maximise the use of that conserved diversity. The subjects of conservation and use of legume diversity, the Mediterranean ecosystem and taxonomy of legumes are introduced. Generic reviews of the taxonomy, centre of diversity, ecogeographicdistribution, genetic diversity distribution, conservation status, conservation gaps and future research needs are provided, along with a discussion of the importance of rhizobia to the maintenance of legume diversity. Current ex situ and in situ conservation activities as well current legume uses are reviewed. In conclusion future priorities for ex situ and in situ plant genetic conservation and use of Mediterranean legumes are highlighted. All contributors look forward rather than simply reviewing past and current activities and therefore it is hoped that the identification of genetic erosion, location of taxonomic and genetic diversity and promotion of more efficient utilisation of conserved material will be enhanced.
Plant Transformation via Agrobacterium Tumefaciens compiles fundamental and specific information and procedures involving in vitro soybean transformation, which forms the basis for the Agrobacterium-mediated genetic manipulation of soybean using plant tissue culture. This method serves as one of the most preferred, reliable and cost-effective mechanism of transgene expression in both leguminous recalcitrant species and non-legume crops. The technology is favoured due to its simplicity, feasibility and high transformation rates that are so far achieved mostly in monocot plants and a few dicot genotypes. This book provides a comprehensive review of plant transformation which remains necessary for many researchers who are still facing protocol-related hurdles. Among some of the major topics covered in Plant Transformation via Agrobacterium Tumefaciens are the history and discovery of Agrobacterium bacterium, longstanding challenges causing transformation inefficiencies, types and conditions of explants, development of transgenic plants for stress resistance, and the role of transgenic plants on animal/human health, including the environment. Plant Transformation via Agrobacterium Tumefaciens helps the reader to understand how soybean, like many other orphan legume crops, faces the risk of overexploitation which may render the currently available varieties redundant and extinct should its narrow gene pool not improve. Plant transformation serves as a key technique in improving the gene pool, while developing varieties that are drought tolerant, have enhanced nutritional value, pest resistant and reduce the destruction by disease causing microorganims. This book is an essential foundation tool that is available for researchers and students to reinforce the application of Agrobacterium-mediated genetic transformation in soybean.
Insect pests remain a major threat to crop production primarily because of their ability to inflict severe damage on crop yields, as well as their role as key vectors of disease. Early identification of pests is critical to the success of integrated pest management (IPM) programmes and essential for the development of phytosanitary/quarantine regimes to prevent the introduction of invasive insect pests to new environments. Advances in monitoring of native and invasive insect pests of crops reviews the wealth of research on techniques to monitor and thus prevent threats from both native and invasive insect pests. The book considers recent advances in areas such as sampling, identifying and modelling pest populations. With its considered approach, the book explores current best practices for the detection, identification and modelling of native and invasive insect pests of crops. The contributors offer farmers informed advice on how to mitigate a growing problem which has been exacerbated as a result of climate change.
This book is a collection of comprehensive reviewed chapters covering major physiological aspects, both production as well as biochemical aspects, of a plant under low temperature stress. Low temperature stress has been dealt in two parts, first between 10 to 00 C and secondly between 0 to -400 C. This book highlights the physiological aspects of plants under low temperature stress and explains the various adaptive measures plants undergo to tolerate low temperature stress. Essential information is provided on germination, growth and development, dry matter accumulation, partitioning and final yield of a crop plant. As physiology deals with morphological and biochemical aspect of all the basic processes, therefore an in depth understanding the major physiological issues in plants under high temperature will help plant breeders to tailor different crop plants with desirable physiological traits to do better under higher temperature. The present book is intended to cover the effects of low temperature stress on the various physiological aspects in plants. Not only in production physiology, this book also deals with major biochemical processes, like photosynthesis, nitrogen and lipid metabolism, mineral nutrition and plant growth hormones. Efforts have been made deal with different measures to mitigate the effects of low temperature stress on plants. This book will be an asset for post graduate students, faculty members, researchers engaged in not only in physiological studies but also agronomy, plant breeding and like subjects. In depth analysis of the major physiological processes in plants under low temperature stress that are presented in this book will help plant breeders for tailoring crops for desirable physiological traits needed to survive and to give better economic return under the threats of low temperature stress. This book is also helpful for policy planners and industries engaged in agribusiness in short term as well as long term gain.
This collection features four peer-reviewed reviews on Artificial Intelligence (AI) applications in agriculture. The first chapter reviews developments in the use of AI techniques to improve the functionality of decision support systems in agriculture. It reviews the use of techniques such as data mining, artificial neural networks, Bayesian networks, support vector machines and association rule mining. The second chapter examines how robotic and AI can be used to improve precision irrigation in vineyards. The chapter pays particular attention to robot-assisted precision irrigation delivery (RAPID), a novel system currently being developed and tested at the University of California in the United States. The third chapter reviews the current state of mechanized collection technology, such as the development of harvest-assist platforms, as well as the possibilities of these machines to incorporate artificial vision systems to perform an in-field pre-grading of the product. The final chapter explores the emergence of the automated assessment of plant diseases and traits through new sensor systems, AI and robotics. The chapter then considers the application of these digital technologies in plant breeding, focussing on smart farming and plant phenotyping.
Understanding Climate Change Impacts on Crop Productivity and Water examines the greenhouse gas emissions and their warming effect, climate change projections, crop productivity and water. The book explores the most important greenhouse gases that influence the climate system, technical terms associated with climate projections, and the different mechanisms impacting crop productivity and water balance. Adaptive and mitigative strategies are proposed to cope with negative effects of climate change in particular domains. This book will help researchers interested in climate change impacts on the atmosphere, soil and plants.
This new volume addresses the growing use of organic farming in recent past decades fueled by the concern with the many deleterious effects of conventional agricultural practices, which employ chemical fertilizers, pesticides, and herbicides for large scale production of food. It focuses on sustainable development in farming, primarily detailing the application of different natural resources as manure for organic farming. The authors discuss efficient and cost-effective uses of natural and available resources to produce healthy food while at the same time helping to conserve the environment. Section I of Organic Farming for Sustainable Development discusses in detail the application of microorganisms such as Trichoderma sp., Azospirillum sp., endophytic microorganisms, arbuscular mycorrhiza, Chaetomium sp., and bioactive secondary metabolites in organic farming practices. Section II explores the potential applications of organic amendments and sustainable practices for plant growth and soil health using garlic products, organic substrates, biochar, organic mulching, and tillage and weed management. In addition, Section III summarizes the impacts and prospects of organic crop production technology on health, food safety, and quality. The authors bring together important information that will be helpful in designing organic farming methods for soil sustainability and crop productivity as well as for nutritious food produced efficiently and cost productively. The book provides valuable insight to efficiently and cost-effectively use natural and available resources to increase the nutrient content of our food as well as to manage the organic wastes coming from other sectors, such as from cattle farms without polluting the surroundings.
This collection features five peer-reviewed reviews on biostimulant applications in agriculture. The first chapter provides a comprehensive overview of the optimal design and formulation of microbial and non-microbial biostimulants. The chapter presents two case studies to demonstrate the successful commercialisation of microbial and non-microbial biostimulant products. The second chapter considers the utilisation of humic substances (HS) as plant biostimulants in agriculture and their impact on the physical and chemical properties of soil. The chapter also discusses the production of HS. The third chapter reviews the wealth of research on the mechanism of action, applications and efficacy of key biostimulants such as Bacillus species, Pseudomonas species, Trichoderma species and arbuscular mycorrhizal fungi. The fourth chapter assesses recent advances in the use of plant growth-promoting rhizobacteria (PGPR) as a means of enhancing crop root function and nutrient use. The chapter also considers the challenge of practical adoption and use of PGPR in commercial agricultural settings. The final chapter reviews the utilisation of biostimulants as an integrated pest management tool in horticulture. The chapter considers their role in promoting plant growth, building soil structure, as well as pest and disease suppression.
Provides a contemporary view of the impact of climate change on cultivation of various fruit species. Offers modern approaches for mitigating the adverse impact of climate change on fruits cultivation. Describes case studies, empirical experiments and observations emphasizing the research progress of understanding and combating the impact of climate change on fruits production. Illustrates concepts with relevant figures and tabulated data.
Wheat, which is the second most important cereal crop in the world, is being grown in a wide range of climates over an area of about 228 945 thou sand ha with a production of about 535 842 MT in the world. Bread wheat (Triticum aestivum L. ) accounts for 80% of the wheat consumption, howe ver, it is attacked by a large number of pests and pathogens; rusts and smuts cause enormous damage to the crop and reduce the yield drastically in some areas. The major breeding objectives for wheat include grain yield, earliness, resistance to lodging and diseases, spikelet fertility, cold tolerance, leaf duration and net assimilation rate, fertilizer utilization, coleoptile length, nutritional value, organoleptic qualities, and the improvement of charac ters such as color and milling yield. The breeding of wheat by traditional methods has been practiced for centuries, however, it has only now come to a stage where these methods are insufficient to make any further breakthrough or to cope with the world's demand. Although numerous varieties are released every year around the world, they do not last long, and long-term objectives cannot be realized unless more genetic variability is generated. Moreover, the intro duction of exotic genetic stocks and their cultivation over large areas results in the depletion and loss of the native germplasm pool."
Biocontrol Systems and Plant Physiology in Modern Agriculture: Processes, Strategies, Innovations focuses on new production alternatives that do not include pesticides, herbicides, and chemicals for primary food production and instead rely on biologically controlled systems of production. The book also relates a number of advances and innovations in the use of agricultural technologies that employ the study of the physiology of plants to know their resistance to different environments in modern agriculture. The book presents research offering viable alternatives for the control of pests for safe food production that are environmentally friendly and that facilitate the reduction of production costs and improve the quality and yield of produce. The volume addresses innovative biocontrol systems to reduce or eliminate the use of agrochemicals by controlling plant diseases by minimizing environmental damage through the use of antagonistic organisms. It also presents new strategies of cultivation that maximize production by optimizing light, temperature, humidity, nutrients and humidity in a controlled environment. The diverse topics in the volume include botanical compounds as adjuvants as an alternative to reduce the pesticide use, on-site production of bio-control agents, plant factory systems that offer controlled safe environments for plant cultivation, promising bio-nematicides for sustainable agriculture, wastewater reclamation for agricultural purposes, the recovery of phytochemicals from plants, using LED lights on plants and microgreens production, and much more. Covering the new trends in biological control, plant factories, and plant metabolism for application in modern agriculture, this volume provides important research and knowledge that facilitates environmentally friendly plant systems, advances the reduction of production costs, and improves the quality and yield of produce.
A comprehensive guide that covers the banana's full value chain - from production to consumption The banana is the world's fourth major fruit crop. Offering a unique and in-depth overview of the fruit's entire value chain, this important new handbook charts its progression from production through to harvest, postharvest, processing, and consumption. The most up-to-date data and best practices are drawn together to present guidelines on innovative storage, processing, and packaging technologies, while fresh approaches to quality management and the value-added utilization of banana byproducts are also explained. Additionally, the book examines the banana's physiology, nutritional significance, and potential diseases and pests. The book also Edited by noted experts in the field of food science, this essential text: Provides a new examination of the world's fourth major fruit crop Covers the fruit's entire value chain Offers dedicated chapters on bioactive and phytochemical compounds found in bananas and the potential of processing byproducts Gives insight into bananas' antioxidant content and other nutritional properties Identifies and explains present and possible effects of bioactive and phytochemical compounds Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition offers the most far-reaching overview of the banana currently available. It will be of great benefit to food industry professionals specializing in fruit processing, packaging, and manufacturing banana-based products. The book is also an excellent resource for those studying or researching food technology, food science, food engineering, food packaging, applied nutrition, biotechnology, and more.
Fungi are important plant pathogens which can be responsible for significant yield losses and in some cases, even complete losses in the infected fields or crops. In many cases, fungi coexist in symbiotic association with plant roots and provide benefits to the plants. Therefore, understanding the diversity of the fungi that interact with plants both in symbiotic and pathogenic interaction is critical to harness the beneficial species and strains and control the pathogenic species and strains. Developments in the field of molecular biology move very fast comparatively, books covering the various aspects of molecular biology of fungi are always welcomed by scientists. Features recent trends in phytomycology and fungal biology studies using modern molecular tools. Contains information on improved methods in genetics, genomics and metabolomics.
Algorithim (mathematics) helps in understanding the direct and indirect relationship of plants that exist within it and other environmental factors. This book helps to understand how yield is related to different growth parameters, how growth is influenced by different environmental phenomenon, how best the resources can be used for crop production, etc. The numerical examples in the book guide a student to coordinate the different parameters and understand the subject of Agronomy well. This book is divided into thirteen chapters and covers comprehensively the different agronomic aspects to understand the science of mathematical Agronomy to meet the current and future challenges related to cropping practices.
Focuses on the menace of metal pollution on plants, crop plants, pulses and vegetables Covers morphological, anatomical, physiological and biochemical aspects Covers metal hyper-accumulators (metallophytes) and bioremediation Alleviation of metal stress by exogenous phytohormonal supply Includes heavy metals' low dose stimulatory effects Focuses on 'omics' studies i.e. genomics, metabolomics, ionomics, proteomics and transcriptomics
With the agricultural sector facing mounting pressure to reduce their carbon footprint, greater emphasis has been placed on improving existing components and practices, such as soil health and biodiversity, which have since emerged as key components to achieving regenerative agriculture. Sensors provide the opportunity to measure crop and soil health at unparalleled scales and resolution. Key developments in sensor technology will help improve our current understanding and optimisation of the complex agricultural systems that make up our global ecosystem. Advances in sensor technology for sustainable crop production provides a comprehensive review of the wealth of research on key developments in sensor technology to improve monitoring and management of crop health, soil health, weeds and diseases. This collection also reviews advances in proximal and remote sensing techniques to monitor soil health, such as spectroscopy and radiometrics, as well as how sensor technology can be optimised for more targeted irrigation, site-specific nutrient and weed management.
This collection features six peer-reviewed reviews on the economics of key agricultural practices. The first chapter assesses the economic impact of horticultural crops and integrated pest management programmes. The chapter highlights the importance of considering agricultural system design and the utilisation of novel control tactics. The second chapter considers the economic consequences of novel integrated weed management (IWM) strategies, as well as the different approaches used to assess the economics of IWM strategies. The third chapter reviews developments in methods to assess the economic value of agricultural biodiversity. The chapter also outlines the limitations of these methods and proposes a possible, novel way forward. The fourth chapter provides an overview of the economic barriers faced by smallholder farmers, including land, labour, capital and inputs, and their impact on farm profitability. The fifth chapter reviews the economics of soil health, focussing on the adoption of soil health management practices by farmers and the effectiveness of incentives. The final chapter examines the use of economic research as a tool to determine the profitability and adoption potential for a number of precision agriculture technologies.
27 chapter cover the distribution, economic importance, conventional propagation, micropropagation, tissue culture, and in vitro production of important medicinal and pharmaceutical compounds in various species of Ajuga, Allium, Ambrosia, Artemisia, Aspilia, Atractylodes, Callitris, Choisya, Cinnamomum, Coluria, Cucumis, Drosera, Daucus, Eustoma, Fagopyrum, Hibiscus, Levisticum, Onobrychis, Orthosiphon, Quercus, Sanguinaria, Solanum, Sophora, Stauntonia, Tanecetum, Vetiveria, and Vitis. Like the previous volumes 4, 7, 15, and 21 in the Medicinal and Aromatic Plants series, the volume is tailored to the need of advanced students, teachers, and research scientists in the area of plant biotechnology andbioengineering, pharmacy, botany and biochemistry.
This volume covers the global history of the Lysenko controversy, while exploring in greater depth the background of D. Lysenko's career and influence in the USSR. By presenting the rise and fall of T.D. Lysenko in a variety of aspects-his influence upon art, unrecognized predecessors, and the extent to which genetics continued in the USSR even while he was in power, and the revival of his reputation today-the authors provide a fresh perspective on one of the most notorious episodes in the history of science.
It is widely recognised that photosynthesis in many important crops is well below its theoretical potential. With crop yields and stability under threat from the impact of climate change, there is now an urgent need to synthesise existing research on best practices for improving C3 photosynthesis in crops to optimise sustainable crop production and yields. Understanding and improving crop photosynthesis reviews the wealth of current research that addresses this challenge. The book explores our understanding of the general components of C3 photosynthesis, including its biochemistry, as well as the recent advances in techniques for improving photosynthesis, focussing primarily on light harvesting and optimising chloroplast function/light conversion. Through providing its readers with a comprehensive exploration of crop photosynthesis, the book showcases how farmers can utilise their understanding of the science behind this key process to optimise their yields and achieve successful crop production.
Soil Health and Intensification of Agroecosystems examines the climate, environmental, and human effects on agroecosystems and how the existing paradigms must be revised in order to establish sustainable production. The increased demand for food and fuel exerts tremendous stress on all aspects of natural resources and the environment to satisfy an ever increasing world population, which includes the use of agriculture products for energy and other uses in addition to human and animal food. The book presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate. The book explores the introduction of sustainable agroecosystems that promote biodiversity, sustain soil health, and enhance food production as ways to help mitigate some of these adverse effects. New agroecosystems will help define a resilient system that can potentially absorb some of the extreme shifts in climate. Changing the existing cropping system paradigm to utilize natural system attributes by promoting biodiversity within production agricultural systems, such as the integration of polycultures, will also enhance ecological resiliency and will likely increase carbon sequestration. |
You may like...
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Handbook of Brain Connectivity
Viktor K. Jirsa, A. R. McIntosh
Hardcover
R5,254
Discovery Miles 52 540
Emergence, Analysis and Evolution of…
Klaus Lucas, Peter Roosen
Hardcover
R4,058
Discovery Miles 40 580
Modelling of Complex Signals in Nerves
J uri Engelbrecht, Kert Tamm, …
Hardcover
R2,656
Discovery Miles 26 560
|