![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry > General
Wine growers are converting to biodynamic viniculture in record numbers. Some of the world’s best wines are now biodynamic. At its heart, biodynamic viniculture is about understanding the nature of vines and their relationship to the environment. This beautifully illustrated and informative book will be of interest to current biodynamic wine growers and those considering converting to biodynamic methods. It includes: -- an introduction to the theory of biodynamic viniculture and the Goethean method of observation in relation to vines; -- practical articles on all aspects of wine growing, including biodiversity, pruning, treating and preventing disease; -- case studies of biodynamic vineyards from around the world. Biodynamic wine expert Jean-Michel Florin has gathered contributions from biodynamic viniculturists to create a beautiful, full-colour book which is both a celebration of sustainable wine growing and an invaluable guide to the future of wine cultivation.
Genetic engineering is a powerful tool for crop improvement. The status of crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. Following Transgenic Crops IV (2007) on cereals, vegetables, root crops, herbs, and spices, and Transgenic Crops V (2007) on fruits, trees, and beverage crops, this volume, Transgenic Crops VI, contains the following sections: Oils and Fibers, Medicinal Crops, Ornamental Crops, Forages and Grains, Regulatory and Intellectual Property of Genetically Manipulated Plants. It is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, forestry, genetics, and both plant cell and molecular biology.
This book aims to provide the reader with an understanding of the concept of the circular economy, in relation to food supply chains. The current food supply chain system, based upon the linear supply chain model, is unquestionably unsustainable: make, use, dispose. The circular supply chain model, on the other hand, aims to keep resources in use for as long as possible, while regenerating products/materials at the end of their service life. In short: reduce, reuse, recycle. This book puts forwards the circular economy as an alternative to the traditional supply chain management models. The circular economy aims to minimise material, energy and environmental damage without restricting economic growth and social and technological progress. It involves transition to renewable energy sources, and it builds on economic, natural and social capital. This shortform monograph will appeal to academics working in the fields of supply chain logistics, operation management, agricultural management, and sustainability more broadly. Dr. Stella Despoudi is Lecturer in Operations and Supply Chain Management at Aston University, UK and Adjunct Lecturer in Supply Chain Management at University of Western Macedonia, Greece. Prof. Uthayasankar Sivarajah is Head of School of Management and Professor of Technology Management and Circular Economy at the School of Management, University of Bradford, UK. Dr Manoj Dora is Director of Collaborative Projects and Outreach at Brunel Business School, UK. Manoj's areas of specialisation are Sustainable Value Chain and Quality Management, with a focus on Lean Six Sigma in the agro-food sector.
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
Somatic hybrids through the fusion of plant protoplasts have widened the genetic variability of cultivated plants. As "Somatic Hybridization in Crop Improvement I", published in 1994, this volume describes how this discipline can contribute to the improvement of crops. It comprises 24 chapters dealing with interspecific and intergeneric somatic hybridization and cybridization. It is divided into four sections:I. Cereals: Barley, rice, and wheat.II. Vegetables and Fruits: Arabidopsis, Asparagus, Brassica, chicory, Citrus, Cucumis, Diospyros, Ipomoea, and various Solanaceous species, e.g., tomato, potato, and eggplant.III. Medicinal and Aromatic Plants: Atropa, Dianthus, Nicotiana, and Senecio.IV. Legumes/Pasture Crops: Alfalfa.This book is tailored to the needs of advanced students, teachers and researchers in the fields of plant breeding, genetic engineering, and plant tissue culture.
This book collects all the latest technologies with their implications on the global rice cultivation. It discusses all aspects of rice production and puts together the latest trends and best practices in the rice production. Rice is produced and consumed worldwide and especially an important crop for Asia. It is a staple food in majority of population living is this continent which distinguishes this from rest of the world. Climatic fluctuations, elevated concentrations of carbon dioxide, enhanced temperature have created extreme weather conditions for rice cultivation. Also, increasing pest attacks make situation complicated for the farmers. Therefore, rice production technology also has to be adjusted accordingly. This book is of interest to teachers, researchers, plant biotechnologists, pathologists, agronomists, soil scientists, food technologists from different part of the globe. Also, the book serves as additional reading material for students of agriculture, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read
Agronomic crops have provided food, beverages, fodder, fuel, medicine and industrial raw materials since the beginning of human civilization. More recently, agronomic crops have been cultivated using scientific rather than traditional methods. However, in the current era of climate change, agronomic crops are suffering from different environmental stresses that result in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yields and maintain productivity under both normal and adverse conditions. Further, in the context of sustainable agronomic crop production, scientists are adopting new approaches, such as varietal development, soil management, nutrient and water management, and pest management. Researchers have also made remarkable advances in developing stress tolerance in crops. However, the search for appropriate solutions for optimal production to meet the increasing food demand is still ongoing. Although there are several publications on the recent advances in these areas, there are few comprehensive resources available covering all of the recent topics. This timely book examines all aspects of production technologies, management practices and stress tolerance of agronomic crops.
Triticale's days as a scientific curiosity are definitely over. Its wide acceptance as a feed, grain or forage crop, or for baking and malting, plus its high yields under marginal or stress conditions have made it an economically important crop in countries such as Poland, Germany, Australia, Portugal, Brazil, Morocco and China. This publication contains selected, reviewed, and up-to-date papers presented at the Third International Triticale Symposium held in Lisbon, Portugal, by the International Triticale Association and EUCARPIA. Among the broad spectrum of subjects addressed in these presentations are cytogenetics, biotechnology, genetic resources, breeding, agronomic practices and diseases. Also included are triticale's food, feed and forage uses, as well as its marketing processes. In a world of increasing population and decreasing agricultural resources, triticale offers a genuine solution for increasing land utilization and grain production.
This detailed volume explores rice molecular biology, genetic engineering, and genome editing technologies. Dividing into three parts, the book covers subjects such as genetic engineering and tissue culture of rice, including efficient methods for rice transformation and regeneration, genome editing, targeted integration, and gene stacking in rice, including multiple methods utilizing CRISPR systems for targeted gene knock-out or genome modification via base editing, and diverse methods describing bioinformatic, molecular, and cellular analyses in rice. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Rice Genome Engineering and Gene Editing: Methods and Protocols serves as a valuable resource for researchers worldwide striving to further their efforts on advancing research and producing genetically improved rice varieties.
This edited book covers all aspects of grain legumes including negative impact of abiotic and biotic stresses under the changing global climate. It discusses the role of various subject disciplines ranging from plant breeding, genetics, plant physiology, molecular biology, and genomics to high-throughput phenotyping and other emerging technologies for sustaining global grain and fodder legume production to alleviate impending global food crises. The book offers strategies to ensure plant-based dietary protein security across the globe. It covers all major commercial legume crops used as food, feed and fodder. This book is targeted to graduate and postgraduate students, researchers, progressive farmers and policymakers to inform them of the importance of cultivating grain and fodder legumes for future global food and nutritional security and for maintaining sustainable ecosystem.
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
Chickpea: Crop Wild Relatives for Enhancing Genetic Gains explores aspects related to critical analysis on factors responsible for narrow genetic base of chickpea productions including domestication bottleneck, the level of diversity present in different cultivated and wild species, the uniqueness and usefulness of potential gene sources available and maintained in production systems across the globe, the level of genetic erosion both at landrace and species level over time and space etc. Despite considerable international investment in conventional breeding, production of chickpea has not yet been significantly improved beyond that achieved through its normal single domestication event and high self-pollination rate. Total annual pulse production of ~12 million tons (FAO 2016) is far below actual potential. Susceptibility to both biotic and abiotic stresses have created a production level bottleneck whose solution possibly lies in the use of crop wild relatives and other genetic traits cultivated by tailoring novel germplasm. Presenting options for widening the genetic base of chickpea cultivars by introgression of diverse genes available in distantly related wild Cicer taxa, thus expanding the genetic base and maximize genetic gains from the selection, it is necessary to accumulate other complimentary alleles from CWRs. This review will focus on present status of gene pool and species distribution, germplasm conservation, characterization and evaluation, problems associated with crop production, sources of target traits available in wild species, status of trait introgression in synthesizing new gene pool of chickpea along with progress made in chickpea genomics. An edited book with contributions from leading scientists, this information will guide and inform chickpea breeders, PGR researchers and crop biologists across the world.
Microbial Endophytes: Functional Biology and Applications focuses on endophytic bacteria and fungi, including information on foundational endophytes and the latest advances in relevant genomics, proteomics and nanotechnological aspects. The book provides insights into the molecular aspects of plant endophytes and their interactions and applications, also exploring the potential commercialization of endophytic microorganisms and their use as bio fertilizers, in biocontrol, and as bioactive compounds for other sustainable applications. Coverage of important and emerging legal considerations relevant to those working to implement these important bacteria in production processes is also included.
Advances in Agronomy, Volume 161, continues to be recognized as a leading reference and first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich, varied and exemplary of the abundant subject matter addressed by this long-running serial.
Climate Change and Food Security with Emphasis on Wheat is the first book to present the full scope of research in wheat improvement, revealing the correlations to global issues including climate change and global warming which contribute to food security issues. Wheat plays a key role in the health of the global economy. As the world population continuously increases, economies modernize, and incomes rise, wheat production will have to increase dramatically to secure it as a reliable and sustainable food source. Since covering more land area with wheat crops is not a sustainable option, future wheat crops must have consistently higher yields and be able to resist and/or tolerate biotic and abiotic stresses that result from climate change. Addressing the biophysical and socioeconomic constraints of producing high-yielding, disease-resistant, and good quality wheat, this book will aid in research efforts to increase and stabilize wheat production worldwide. Written by an international team of experts, Climate Change and Food Security with Emphasis on Wheat is an excellent resource for academics, researchers, and students interested in wheat and grain research, especially as it is relevant to food security.
In the last few miles above the Cape Cod Canal, visitors to the Cape pass through the towns of Middleboro, Carver, and Wareham. To most, these places will never be more than a roadside sign, but there is life here--of a very particular sort. Beyond the highway are 11,000 acres of bog, and each fall, after the tourists have gone home, men and machines appear to harvest a third of the nation's cranberries, turkey's tablemate. This book looks at the history of this tart and diminutive fruit, the ways it is cultivated, cared for, and consumed. It looks into the lives and livelihoods of those who harvest it--some families have been in the business for five generations. It provides a rich and surprising story of this under-appreciated berry.
Advances in Cyanobacterial Biology presents the novel, practical, and theoretical aspects of cyanobacteria, providing a better understanding of basic and advanced biotechnological application in the field of sustainable agriculture. Chapters have been designed to deal with the different aspects of cyanobacteria including their role in the evolution of life, cyanobacterial diversity and classification, isolation, and characterization of cyanobacteria through biochemical and molecular approaches, phylogeny and biogeography of cyanobacteria, symbiosis, Cyanobacterial photosynthesis, morphological and physiological adaptation to abiotic stresses, stress-tolerant cyanobacterium, biological nitrogen fixation. Other topics include circadian rhythms, genetics and molecular biology of abiotic stress responses, application of cyanobacteria and cyanobacterial mats in wastewater treatments, use as a source of novel stress-responsive genes for development of stress tolerance and as a source of biofuels, industrial application, as biofertilizer, cyanobacterial blooms, use in Nano-technology and nanomedicines as well as potential applications. This book will be important for academics and researchers working in cyanobacteria, cyanobacterial environmental biology, cyanobacterial agriculture and cyanobacterial molecular biologists.
Handbook of Vegetable Pests, Second Edition, provides two types of diagnostic aids: the easy-to-use "guides to pests of vegetable crops", which guides the reader to the most likely pests of each vegetable crop based on the portion of the plant attacked and the category of pest; and the more technical dichotomous keys for identification of many of the difficult-to-identify species. It includes over 300 common and occasional pest species, detailing the geographic distribution of vegetable pests, host plant relationships, natural enemies, damage, life history, and methods of control and damage prevention.
The Earth's climate is constantly changing. Some of the changes are
progressive, while others fluctuate at various time scales. The El
Nino-la Nina cycle is one such fluctuation that recurs every few
years and has far-reaching impacts. It generally appears at least
once per decade, but this may vary with our changing climate. The
exact frequency, sequence, duration and intensity of El Nino's
manifestations, as well as its effects and geographic
distributions, are highly variable. The El Nino-la Nina cycle is
particularly challenging to study due to its many interlinked
phenomena that occur in various locations around the globe. These
worldwide teleconnections are precisely what makes studying El
Nino-la Nina so important.
Presenting an overview of agroecology within the framework of climate change, this book looks at the impact of our changing climate on crop production and agroecosystems, reporting on how plants will cope with these changes, and how we can mitigate these negative impacts to ensure food production for the growing population. It explores the ways that farmers can confront the challenges of climate change, with contributed chapters from around the world demonstrating the different challenges associated with differing climates. Examples are provided of the approaches being taken right now to expand the ecological, physiological, morphological, and productive potential of a range of crop types. Describes the effects and responses of the macro and micro levels of crops under the different components of climate change Reports on the adaptation and resilience of food production systems within the changing climate Covers how plants cope with the changing climate including physiological, biochemical, phenotype, and ecosystem responses Provides an in-depth discussion on the importance of agricultural education connected to climate change Giving readers a greater understanding of the mechanisms of plant resilience to climate change, this book provides new insights into improving the productivity of an individual crop species as well as bringing resistance and resiliency to the entire agroecosystem. It offers a strong foundation for changing research and education programs so that they build the resistance and resilience that will be needed for the uncertain climate future ahead.
This collection features four peer-reviewed reviews on improving the shelf life of horticultural produce. The first chapter introduces the concept of smart distribution and highlights how optimising the management of produce distribution systems can reduce loss and waste in the horticultural sector and extend shelf life by minimising quality deterioration. The chapter also discusses the use of remote sensing technology to determine food quality. The second chapter reviews a selection of pre- and postharvest strategies used to optimise fruit quality. The chapter considers ways of measuring harvest maturity, as well as the role of temperature controlled environments in extending the shelf life of tree fruit. The third chapter summarises the wealth of recent research on the preservation of fruit quality in mango production, as well as how postharvest operations can be optimised to reduce loss and waste and maximise shelf life, including the use of controlled environments, waxes and edible coatings. The final chapter explores the advantages and disadvantages of cultivating ripening-impaired tomato mutants and genetically engineered genotypes characterized by inhibition of the ripening process. The chapter considers the use of ethylene inhibitors and controlled environments as a means of mitigating devastating yield losses. |
You may like...
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,045
Discovery Miles 30 450
Microbial Management of Plant Stresses…
Ajay Kumar, Samir Droby
Paperback
R3,998
Discovery Miles 39 980
Working with Dynamic Crop Models…
Daniel Wallach, David Makowski, …
Hardcover
Advances in Rice Research for Abiotic…
Mirza Hasanuzzaman, Masayuki Fujita, …
Paperback
R6,493
Discovery Miles 64 930
Vegetation Dynamics and Crop Stress - An…
Dipanwita Dutta, Arnab Kundu, …
Paperback
R3,940
Discovery Miles 39 400
|