![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation > General
The book is divided into three parts: Flower, Anther, and Ovule. The principal aim of this volume (along with the other 3 volumes in the series) is to summarize the classical and current concepts about flower generative organs, their structure and development, and about seed formation processes. The book contains ample material that can be employed in theoretical generalizations, in analyzing the distribution of features (or their uniqueness) and evolutionary transformations of structures. This offers vast possibilities for revising the existing and developing new classifications and concepts.
This work follows on from the 1995 publication on European orchids. The atlas is now completed with a second part, containing data on the pollination of orchids of the continents of America, Asia, Africa (including Madagascar) and Australia (including New Zealand).;The first part of the book is adapted from the general account of the previous publication and is extended with chapters on taxonomy and pollinators. The general account deals with such things as the history, evolution, morphology, chemistry and genetics of orchid pollination. The second part gives a systematic account for each continent of all well known details. The text is designed to have relevance for orchid lovers whether professional or amateur.
Development of superior crops that have consistent performance in quality and in quantity has not received the same emphasis in the field of genetics and breeding as merited. Specialty trait requires special focus to propagate. Yet basic germplasm and breeding methodologies optimized to improve crops are often applied in the development of improved specialty types. However, because of the standards required for specialty traits, methods of development and improvement are usually more complex than those for common commodity crops. The same standards of performance are desired, but the genetics of the specialty traits often impose breeding criteria distinct from those of non-specialty possessing crops. Specifically, quality improvement programs have unique characteristics that require careful handling and monitoring during their development for specific needs. Adding value either via alternative products from the large volumes of grain produced or development of specialty types is of interest to producers and processors. This work assimilates the most topical results about quality improvement with contemporary plant breeding approaches.The objective of this book is to provide a summary of the germplasm, methods of development, and specific problems involved for quality breeding. In total, fourteen chapters, written by leading scientists involved in crop improvement research, provide comprehensive coverage of the major factors impacting specialty crop improvement.
Early anthropological evidence for plant use as medicine is 60,000 years old as reported from the Neanderthal grave in Iraq. The importance of plants as medicine is further supported by archeological evidence from Asia and the Middle East. Today, around 1.4 billion people in South Asia alone have no access to modern health care, and rely instead on traditional medicine to alleviate various symptoms. On a global basis, approximately 50 to 80 thousand plant species are used either natively or as pharmaceutical derivatives for life-threatening conditions that include diabetes, hypertension and cancers. As the demand for plant-based medicine rises, there is an unmet need to investigate the quality, safety and efficacy of these herbals by the "scientific methods". Current research on drug discovery from medicinal plants involves a multifaceted approach combining botanical, phytochemical, analytical, and molecular techniques. For instance, high throughput robotic screens have been developed by industry; it is now possible to carry out 50,000 tests per day in the search for compounds which act on a key enzyme or a subset of receptors. This and other bioassays thus offer hope that one may eventually identify compounds for treating a variety of diseases or conditions. However, drug development from natural products is not without its problems. Frequent challenges encountered include the procurement of raw materials, the selection and implementation of appropriate high-throughput bioassays, and the scaling-up of preparative procedures. Research scientists should therefore arm themselves with the right tools and knowledge in order to harness the vast potentials of plant-based therapeutics. The main objective of Plant and Human Health is to serve as a comprehensive guide for this endeavor. Volume 1 highlights how humans from specific areas or cultures use indigenous plants. Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the third world and have slowly taken roots as alternative medicine in the West. The integration of modern science with traditional uses of herbal drugs is important for our understanding of this ethnobotanical relationship. Volume 2 deals with the phytochemical and molecular characterization of herbal medicine. Specifically, it will focus on the secondary metabolic compounds which afford protection against diseases. Lastly, Volume 3 focuses on the physiological mechanisms by which the active ingredients of medicinal plants serve to improve human health. Together this three-volume collection intends to bridge the gap for herbalists, traditional and modern medical practitioners, and students and researchers in botany and horticulture.
This important reference book is the first comprehensive resource worldwide that reflects research achievements in date palm biotechnology, documenting research events during the last four decades, current status, and future outlook. This book is essential for researchers, policy makers, and commercial entrepreneurs concerned with date palm. The book is invaluable for date palm biotechnology students and specialists. This monument is written by an international team of experienced researchers from both academia and industry. It consists of five sections covering all aspects of date palm biotechnology including A) Micropropagation, B) Somaclonal Variation, Mutation and Selection, C) Germplasm Biodiversity and Conservation, D) Genetics and Genetic Improvement, and E) Metabolites and Industrial Biotechnology. The book brings together the principles and practices of contemporary date palm biotechnology. Each chapter contains background knowledge related to the topic, followed by a comprehensive literature review of research methodology and results including the authors own experience including illustrative tables and photographs."
Plant protoplasts have proved to be an excellent tool for in vitro manipu- lations, somatic hybridization, DNA uptake and genetic transformation, and for the induction of somaclonal variation. These studies reflect the far- reaching impact of protoplast alterations for agriculture and forest bio- technology. Taking these aspects into consideration, the series of books on Plant Protoplasts and Genetic Engineering provides a survey of the litera- ture, focusing on recent information and the state of the art in protoplast Plant Protoplasts manipulation and genetic transformation. This book, and Genetic Engineering VI, like the previous five volumes published in 1989,1993, and 1994, is unique in its approach. It comprises 27 chapters dealing with the regeneration of plants from protoplasts, and genetic transformation in various species of Arachis, Bupleurum, Capsella, Dendrobium, Dianthus, Diospyros, Fagopyrum, Festuca, Gentiana, Glycyrrhiza, Gossypium, Hemerocallis, Levisticum, Lonicera, Musa, Physallis, Platanus, Prunus, Saposhnikovia, Solanum, Spinacia, Trititrigia, Tulipa, and Vaccinium; including fruits such as apricot, banana, cranberry, pepino, peach, and plum. This book may be of special interest to advanced students, teachers, and research scientists in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general bio- technology. New Delhi, August 1995 Professor Y. P. S. BAJA] Series Editor Contents Section I Regeneration of Plants from Protoplasts 1. 1 Regeneration of Plants from Protop1asts of Arachis Species (Peanut) Z. LI, R. L. JARRET, and J. W. DEMSKI (With 2 Figures) 1 Introduction ...3 2 Isolation of Pro top lasts ...4 3 Culture of Protoplasts ...
The book discusses the importance of eggplant (Solanum melongena L.) as a crop, highlighting the potential for eggplant to serve as a model for understanding several evolutionary and taxonomic questions. It also explores the genomic make-up, in particular in comparison to other Solanaceous crops, and examines the parallels between eggplant and tomato domestication as well as between the most common eggplant species and two related eggplants native to Africa (Ethiopian eggplant [Solanum aethiopicum L.] and African eggplant [Solanum macrocarpon L.]). The eggplant genome was first sequenced in 2014, and an improved version was due to be released in 2017. Further investigations have revealed the relationships between wild species, domesticated eggplant, and feral weedy eggplant (derived from the domesticate), as well as targets of selection during domestication. Parallels between eggplant and tomato domestication loci are well known and the molecular basis is currently being investigated. Eggplant is a source of nutrition for millions of people worldwide, especially in Southeast Asia where it is a staple food source. Domesticated in the old world, in contrast to its congeners tomato and potato, the eggplant is morphologically and nutritionally diverse. The spread of wild eggplants from Africa is particularly interesting from a cultural point of view. This book brings together diverse fields of research, from bioinformatics to taxonomy to nutrition to allow readers to fully understand eggplant's importance and potential.
In order to feed the world, global agriculture will have to double food production by 2050. As a result, the use of soils with fertilizers and pesticides in agronomic ecosystems will increase, taking into account the sustainability of these systems and also the provision of food security. Thus, soil ecosystems, their health, and their quality are directly involved in sustainable agronomical practices, and it is important to recognize the important role of soil microbial communities such as mycorrhizal fungi, their biodiversity, interactions, and functioning. Soil ecosystems are under the threat of biodiversity loss due to an increase of cultivated areas and agronomic exploitation intensity. Also, changes in land use alter the structure and function of ecosystems where biodiversity is vital in the ecosystem. Soils are a major aid in food production in all terrestrial ecosystems; however, this means they are also involved in gas emission and global warming. Thus, in agronomic ecosystems, several mitigation practices have been proposed to promote the increase of carbon soil stock, and the reduction of warming gas emission from soils. In South America, most of the rural population depends economically on agriculture and usually works in family units. New, organic, safe, and sustainable agro-forestry practices must be applied to support local communities and countries to achieve hunger eradication, rural poverty reduction, and sustainable development. This book compiles new information for mycorrhizal occurrence in natural and anthropic environments in South America. It includes new reports of mycorrhizal fungi diversity along different mycorrhizal types and their effect on plant communities, plant invasions, the use of mycorrhizal fungi for ecological and sustainable studies, management programs of natural and agroecosystems, and forestry and food-secure production. This book fills the gaps in biodiversity knowledge, management and safe food production of mycorrhizas. It should be a valuable help to researchers, professors and students, to aid in use of mycorrhizal fungi while also focusing on their biodiversity, sustainable safe food production, and conservation perspectives.
The symposium on "Zinc in Soils and Plants" is the third in a series which began with "Copper in Soils and Plants" in Perth in 1981 and continued with "Manganese in Soils and Plants" in Adelaide in 1988. The symP9sium brings together a series of valuable accounts of many aspects of the reactions of zinc in soils, the uptake, transport and utilization of zinc in plants, the diagnosis and correction of zinc deficiency in plants and the role of zinc in animal and human nutrition. I am grateful for the financial support provided by Grains Research and Development Corporation, Rural Industries Research and Development Corporation, Wool Research and Development Corporation, Ansett Australia, and Qantas Australian. I am most appreciative of the willingness of many scientists to act as referees: G S P Ritchie, R J Gilkes, N C Uren, K Tiller, BLeach, H Greenway, N E Longnecker, J F Loneragan, Z Rengel, C A Atkins, J W Gartrell, P J Randall, D G Edwards, R J Hannam, R J Moir, J E Dreosti, N Suttle, C L White, H Marschner, N Wilhelm, M McBride. All provided valuable comments on the manuscripts. Finally, I thank Mrs M Davison who provided excellent secretarial assistance. A.D. Robson September 1993 Chapter 1.
This comprehensive handbook provides up-to-date knowledge and practical advice from established authorities in aerosol science. It covers the principles and practices of bioaerosol sampling, descriptions and comparisons of bioaerosol samplers, calibration methods, and assay techniques, with an emphasis on practicalities, such as which sampler to use and where it should be placed. The text also offers critiques concerning handling the samples to provide representative and meaningful assays for their viability, infectivity, and allergenicity. A wide range of microbes-viz., viruses, bacteria, fungi and pollens, and their fragments-are considered from such perspectives.
This book collates various aspects of stress tolerance in crop plants. It primarily focuses on the heat and temperature related stress, starting from the severity of the problem on quantity and quality of yield under the threat of global climate change. The content also explores other mechanistic dimensions such as physiochemical and molecular mechanism underlying thermotolerance, signaling mechanism under heat stress, role of heat shock proteins in modulating thermotolerance, omics approach for development of climate smart-crop. Chapters discuss different approaches used in the past to develop heat stress tolerant crop plants, list of developed thermotolerant agriculturally important crop plants, redox homeostasis under heat stress, nutrient uptake and use efficiency in plants under heat stress and much more. The book is a useful compilation for researchers working in the area of abiotic stress tolerance in crop plants, as well as for students of plant physiology and agricultural sciences.
Proceedings of a Workshop, organized by the Directorate-General for Agriculture (DG VI) of the Commission of the European Communities, and held in Boignville (France) on May 25-27, 1988
The dynamic role of plant hormones in regulation of plant growth and development revealed by its control of rates of metabolic processes and various related enzymetic reactions at molecular and submolecular levels is now weil established. During the course of last 35 years endless development in agricultural biotechnology has provided immense literature to understand hormone-regulated aspects of plant growth and development ; but plant physiologists all over the world are still devoting themselves and will continue for an indifinite period to disclose the mystries of this regulation. Volume I of this series has already been published and has been accepted weil. This encouraged me to edit aseries of volumes (I do not know the number) on this subject. In the following pages various aspects of hormone-controlled physiological processes Iike, Hormonal Control of pro tein synthesis in plants, Auxin-induced elongation, Hormonal regulation of abnormal growth in plants, Hormonal regulation of development in mosses, Some phenolics as plant growth and morphogenesis regulators, Plant growth regulating properties of sterol inhibiting fungicides, Hormonal regulation of sex expression in plants, Water relation and plant growth regulators, Hormonal regulation of root development under water stress, Gravity perception and responses meehanism in graviresponding cereal grass shoots, Hormonal regulation of leaf Growth senescence in relation to stomatal movement, and Chloroindole auxins of pea and related species, have been included.
The book contains the proceedings of the Fifth International Wheat Conference at which leading international scientists reviewed current research issues and developments in wheat improvement. The debated topics cover breeding and genetics, genetic resources and importance of free germplasm exchange, breeding for biotic and abiotic stresses, physiology, agronomy and mineral nutrition, grain quality and biotechnology. A significant number of presentations were made by participants from the former USSR and Eastern and Central Europe, making this book also a prime reference for current wheat research and production status in these countries. This book provides an opportunity for wheat scientists interested in global wheat improvement issues to obtain an insight into the research that is currently being conducted worldwide and the prospects of further improvement to meet the increasing demands for this food commodity.
Achievements today in plant biotechnology have already surpassed all previous expectations. Plant biotechnology, integrated with classical breeding, is now on the verge of creating the evergreen revolution' to solve the world's envisaged tripled demand for food, agricultural commodities and natural products. New biotechnologies are being continuously adapted to agricultural practices, opening new vistas for plant utilization. Plant biotechnology is changing the plant scene in three major areas: (1) growth and development control (vegetative, generative and propagation), (2) protecting plants against the ever-increasing threats of abiotic and biotic stress, (3) expanding the horizons by producing specialty foods, biochemicals and pharmaceuticals. The potential for improving plant and animal productivity and their proper use in agriculture relies largely on newly-developed DNA biotechnology and molecular markers. These techniques enable the selection of successful genotypes, better isolation and cloning of favorable traits, and the creating of transgenic organisms of importance to agriculture. These areas were extensively discussed at the 9th international congress of the International Association of Plant Tissue Culture and Biotechnology, Plant Biotechnology and In Vitro Biology in the 21st Century', which was held in Jerusalem in June 1998. The present book of proceedings contains the variety of scientific achievements and techniques that were presented: Basic and Applied Aspects of Growth, Development and Differentiation; Genetic Manipulations: Transformation and Gene Expression, Hybridization, Haploidization and Mutagenesis; Genetic Stability and Instability, Selection and Variability; Regulation of Primary and Secondary Metabolism; Model Systems: Cell Cycle, Transport and Signal Transduction; Biotechnology for Plant Protection: Abiotic and Biotic Stress; Biotechnology for Crop Improvement: Yield, Quality and Production of Valuable Substances; Novel Micropropagation Methods; New Markets and Commercial Applications; Intellectual Property Rights.
Wheat breeders have achieved significant results over the last fifty years in research on mankind's one of the most important crops. Classical genetic and breeding methods, far broader international cooperation than was experienced in earlier periods, and improvements in agronomic techniques have led to previously unimaginable development in the utilisation of wheat for human consumption. The contribution of wheat researchers is particularly noteworthy since these results have been achieved at a time when the world population has grown extremely dynamically. Despite this demographic explosion, of a proportion never previously experienced, thousands of millions of people have been saved from starvation, thus avoiding unpredictable social consequences and situations irreconcilable with human dignity. Despite these developments in many regions of the world food supplies are still uncertain and the increase in the world's wheat production has not kept pace with the population increase during the last decade. Due to the evils of civilisation and the pollution of the environment there is a constant decline in the per capita area of land suitable for agricultural production. Based on population estimates for 2030, the present wheat yield of around 600 million tonnes will have to be increased to almost 1000 million tonnes if food supplies are to be maintained at the present level.
Global industrial growth has resulted in numerous pollutants being introduced into the environment. It has additionally caused decreased water availability for agricultural activity in developing countries, which, in turn, has compelled farmers to use wastewater irrigation. In advanced agricultural systems, farmers are adapting various strategies to achieve a higher yield and thus sustain crop productivity. Consequent to the introduction of contaminants in the environment, soil pollutants have become a critical issue. Selection of disease-resistant, high-yielding crop varieties, and extensive fertilizer applications are quite common among farming communities. This book provides insight into environmental pollutants with special reference to their interference with plant nutrition. It additionally discusses the physiological aspects of plant nutrition. This book enhances current knowledge of the effects of pollutants on plant growth and physiology.
Charles E. Hess Department of Environmental Horticulture University of California Davis, CA 95616 Research in the biology of adventitious root formation has a special place in science. It provides an excellent forum in which to pursue fundamental research on the regulation of plant growth and development. At the same time the results of the research have been quickly applied by commercial plant propagators, agronomists, foresters and horticulturists (see the chapter by Kovar and Kuchenbuch, by Ritchie, and by Davies and coworkers in this volume). In an era when there is great interest in speeding technology transfer, the experiences gained in research in adventitious root formation may provide useful examples for other areas of science. Interaction between the fundamental and the applied have been and continue to be facilitated by the establishment, in 1951, of the Plant Propagators' Society, which has evolved into the International Plant Propagators' Society, with active programs in six regions around the world. It is a unique organization which brings together researchers in universities, botanical gardens and arboreta, and commercial plant propagators. In this synergistic environment new knowledge is rapidly transferred and new ideas for fundamental research evolve from the presentations and discussions by experienced plant propagators. In the past 50 years, based on research related to the biology of adventitious root formation, advances in plant propagation have been made on two major fronts.
This book presents latest work in the field of plant biotechnology regarding high-efficiency micropropagation for commercial exploitation at low labor and equipment costs. The book consists of 18 chapters on establishing advanced culture systems, techniques as well as latest modification protocols on a variety of crops. It also discusses new methods such as nylon film culture system, light-emitting diode and wireless light-emitting diode system, stem elongation, wounding manipulation and shoot tip removal, in vitro hydroponic and microponic culture system, thin cell layer culture system etc. Plant cell tissue has been developed more than fifty years ago. Since then applications of in vitro plant propagation expanded rapidly all around the world and played as an important role in agricultural and horticultural systems. This book will be of interest to teachers, researchers, scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences.
Nanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This work should provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.
For all undergraduate courses in plant propagation at the two-year and four-year colleges and universities. The world standard for plant propagation and horticulture for over 50 years, Hartmann and Kester's Plant Propagation continues to be the field's most complete, up-to-date text on plant propagation. It now contains color figures throughout, promoting learning and making it an even more useful working text and reference. It also contains extensive updates reflecting the latest commercial techniques and understanding of propagation biology. Like previous editions, it is organized into paired chapters on principles and practices, so it can easily be adapted for teaching courses that cover only practical topics, and for courses that also cover conceptual issues.
This book is the first comprehensive compilation describing the importance of sandalwood in national and international markets, genetic resources, molecular markers, whole genome sequencing, and pathway genes involved in oil biosynthesis, aroma and fragrance. Application of various "omics" approaches in delineating genome architecture and annotation of genes is highlighted. This book comprises 10 chapters covered over 200 pages authored by the researchers involved in sandalwood genomics. The sandalwood, Santalum album is known for its unique fragrance and finest wood available for carving. Also, sandalwood is intertwined with Indian culture and it is the second most valuable and expensive tree in the world.
The protein molecule is the basic building block of every living entity. Its deficiency leads to restricted growth and development of individuals. Globally, such malnutrition is on the rise due to various reasons such as rapid population growth, stagnation of productivity, and ever-rising costs. Millions of people, especially in developing and under-developed countries, suffer from protein malnutrition and the only possible solution is to encourage farmers to grow high-protein food legume crops in their fields for domestic consumption. This, however, could be possible if farmers are provided with new cultivars with high yield, and resistance to major insects, diseases, and key abiotic stresses. The major food legume crops are chickpea, cowpea, common bean, groundnut, lentil, pigeonpea, and soybean. Predominantly, the legume crops are grown under a subsistence level and, therefore, in comparison to cereals and horticultural crops their productivity is low and highly variable. The crop breeders around the globe are engaged in breeding suitable cultivars for harsh and changing environments but success has been limited and not up to needs. With the recent development of new technologies in plant sciences, efforts are being made to help under-privileged farmers through breeding new cultivars which will produce more protein per unit of land area. In this book, the contributors analyze the constraints, review new technologies, and propose a future course of crop breeding programs in seven cold and warm season legume crops.
The rapid progress on somatic embryogenesis and its prospects for potential application to improving woody plants prompted us to edit this book initially in three volumes, and now an additional three more volumes. We were all convinced that such a treatise was needed and would be extremely useful to researchers and students. This volume 6 is dedicated to Prof. Harry Waris, Helsinki, Finland, who did pioneer work on somatic embryogenesis during the time when Prof. Steward and others were actively engaged in this area. His former student Prof. Liisa Simols, University of Helsinki, Finland, has written a dedication Harry Waris, a pioneer in somatic embryogenesis' to her teacher Prof. Waris. This volume is divided into three sections and contains a total of 26 chapters. Section A comprises seven chapters covering topics such as: Historical insights into some contemporary problems in somatic embryogenesis (SE); Thin cell layer for somatic embryogenesis induction in woody trees; SE in tropical fruit and forest trees; SE in fruit and forest arid trees; Status of SE in Indian forest trees; SE research in fruit trees in India; Applications of SE for the improvement of tropical fruit trees. Section B comprises 15 chapters, dealing with: SE in oil palm, hazelnut (Corylus avellana L.), pistachio (Pistacia vera L.), Araucaria angustifolia, Quercus suber, Aspidosperma polyneuron, Acacia senegal, Simmondsia chiensis, Cupressus sempervirens, pecan (Carya illinoinensis), rattan (Calamus spp.), tamarillo (Cyphomandra betacea, longan (Dimocarpus longan Lor.), Aegle marmelos, and Euonymus europaeus. Section C comprises three chapters related to cryo-storage of citrus, conifers and rubber. All the chaptershave been peer-reviewed and revised accordingly to improve the quality of the chapters. We are thankful to all: (a) contributory authors for their co-operation in submitting manuscripts in time, and (b) reviewers for spending their valuable time in reviewing the manuscripts.
This book is the first comprehensive compilation of deliberations on whole genome sequencing of sesame including genome assembly, annotation, structure and synteny analysis, and sequencing of its chloroplast genome and also its wild species. It presents narratives on classical genetics and breeding, tissue culture and genetic transformation, molecular mapping and breeding. Other chapters describe the beneficial components in sesame protein and oil, botanical depictions and cytological features. Prospects of designed breeding in the post-genomics era including gene discovery have also been enumerated. Altogether, the book contains 19 chapters authored by globally reputed experts on the relevant field in this crop. This book is useful to the students, teachers, and scientists in the academia and relevant private companies interested in classical and molecular genetics, biotechnology, breeding, biochemistry, traditional and molecular breeding, and structural and evolutionary genomics. The work is also useful to seed and oil industries. |
You may like...
Frontiers in Computational Chemistry…
Zaheer Ul Haq, Jeffry D. Madura
Paperback
R2,948
Discovery Miles 29 480
New Frontiers in Information and…
Przemyslaw Rozewski, Dmitry Novikov, …
Hardcover
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, …
Hardcover
R2,569
Discovery Miles 25 690
Interpreting the Past, Understanding the…
Stephen Kendrick, David McCrone, …
Hardcover
R2,651
Discovery Miles 26 510
|