![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.
Today’s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter’s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble. In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics.
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.
Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive and synergistic look into challenging issues such as theoretical modeling, advanced surface probing, and fabrication. The book also provides a link to the engineering of novel advanced materials playing an important role in advancing technologies in various fields.
Nanobiotechnology is a fast developing field of research and application in many domains such as in medicine, pharmacy, cosmetics and agro-industry. The book addresses the lastest fundamental results on nanotoxicology and nanoethics, and the enormous range of potential applications in the fields of medical diagnostics, nanomedicine, and food and water administration. Nanoscale objects have properties leading to specific kinds of behaviour, sometimes exacerbating their chemical reactivity, physical behaviour, or potential to penetrate deeply within living organisms. Hence it is important to ensure the responsible and safe development of nanomaterials and nanotechnologies. This fourth volume in the Nanoscience series should make its mark, by presenting the state of the art in the fields of nanotoxicology and nanoethics. This is the first book to combine both scientific knowledge and ethical and social recommendations. It also presents specific policies on nanotechnologies set up by national and international authorities. This book is of interest to engineers, researchers, and graduate students.
This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. In particular the book is devoted to new ideas, challenges, solutions and applications of Mechatronics. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.
This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community.
This thesis consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. The author evaluates and optimizes the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension. The study reveals three major deformation zones in cellular metallic glass structures, where deformation changes from collective buckling showing non-linear elasticity to localized failure exhibiting a brittle-like deformation, and finally to global sudden failure with negligible plasticity as the length to thickness ratio of the ligaments increases. The author found that spacing and size of the pores, the pore configuration within the matrix, and the overall width of the sample determines the extent of deformation, where the optimized values are attained for pore diameter to spacing ratio of one with AB type pore stacking.
The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterials and their applications with chemical engineering rules that educates the readers about nanosclale process design, simulation, modelling and optimization. Briefly, the book takes the readers through a journey from fundamentals to frontiers of engineering of nanoscale processes and informs them about industrial perspective research challenges, opportunities and synergism in chemical Engineering and nanotechnology. Utilising this information the readers can make informed decisions on their career and business.
This long-awaited volume chronicles the horological work carried out in France, Germany, and North America and completes the fascinating history of precision timekeeping in recent time. In France, renowned clockmakers include the Berthouds, the Lepautes, Robin, Janvier, Lepine, LeRoy and Leroy, Bourdier, Jacot and Jarossay. In Germany the primary emphasis is on Riefler, Strasser, and Rohde, but the works of other important makers are also considered. America's contribution to precision timekeeping is chronicled including the works of Seth Thomas, Charles Fasoldt, William Bond and Son Co., E. Howard and Co. and others. Recent advancements in timekeeping include the W5, a clock created by Philip Woodward and the Littlemore clock created by Professor Hall, almost certainly the most accurate pendulum controlled clock the world has known. Over 500 beautiful color and black-and-white photographs illustrate the historical contributions of these eminent clockmakers.
This book shows how severe plastic deformation techniques could be used to enhance the hydrogen storage properties of metal hybrides. The mechanochemical techniques of ball-milling (BM), Cold Rolling (CR), Equal Chanel Angular Pressing (ECAP) and High Pressure Torsion (HPT) are covered. Each technique is described and critically assessed with respect to its usefulness to process metal hybrides at an industrial scale.
The book presents the fabrication and circuit modeling of quantum dot gate field effect transistor (QDGFET) and quantum dot gate NMOS inverter (QDNMOS inverter). It also introduces the development of a circuit model of QDGFET based on Berkley Short Channel IGFET model (BSIM). Different ternary logic circuits based on QDGFET are also investigated in this book. Advanced circuit such as three-bit and six bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) were also simulated.
Exploring the synthesis, characterization, surface manipulation, electron transfer and biological activity of silver nanoparticles, this book examines the fundamentals of the properties and synthesis of these particles. With a renewed interest in silver nanoparticles, this book addresses the need to understand their potential in industrial, medical and other applications. It is divided into six chapters, each written by an expert and providing a comprehensive review of the topic while detailing recent advances made in each specific area. These topics include surface plasmon band, synthesis and characterization, Surface-enhanced Raman spectroscopy (SERS) and plasmon resonance mediated processes, photocatalysis, biomedical applications and biological activity. It also presents the current state of the art, challenges and future trends of catalysis, sensing and biomedical applications.‘Silver Nanoparticle Applications’ provides an invaluable reference work and introduction for chemists, biologists, physicists and biomedical researchers who are interested in exploring the uses and applications of silver nanoparticles. It is also intended for students, researchers and professionals interested in nanotechnology.
This book deals with the theoretical and computational simulation of monoperiodic nanostructures for different classes of inorganic substances. These simulations are related to their synthesis and experimental studies. A theoretical formalism is developed to describe 1D nanostructures with symmetric shapes and morphologies. Three types of models are considered for this aim: (i) nanotubes (rolled from 2D nanolayers and described within the formalism of line symmetry groups); (ii) nanoribbons (obtained from 2D nanolayers by their cutting along the chosen direction of translation); (iii) nanowires (obtained from 3D lattice by its sectioning along the crystalline planes parallel to the chosen direction of translation). Quantum chemistry ab-initio methods applied for LCAO calculations on electronic and vibrational properties of 1D nanostructures are thoroughly described. Understanding of theoretical aspects presented here enlarges the possibilities for synthesis of monoperiodic nanostructures with predictable morphology and better interpretation of their properties.
For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
The thesis covers a broad range of electronic, optical and opto-electronic devices and various predicted physical effects. In particular, it examines the quantum interference transistor effect in graphene nanorings; tunable spin-filtering and spin-dependent negative differential resistance in composite heterostructures based on graphene and ferromagnetic materials; optical and novel electro-optical bistability and hysteresis in compound systems and the real-time control of radiation patterns of optical nanoantennas. The direction of the main radiation lobe of a regular plasmonic array can be changed abruptly by small variations in external control parameters. This optical effect, apart from its relevance for applications, is a revealing example of the Umklapp process and, thus, is a visual manifestation of one of the most fundamental laws of solid state physics: the conservation of the quasi-momentum to within a reciprocal lattice vector. The thesis analyzes not only results for particular device designs but also a variety of advanced numerical methods which are extended by the author and described in detail. These methods can be used as a sound starting point for further research.
This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology and advanced systems. It reviews light-emitting diodes and lasers made of silicon bulk crystals in which the light emission principle is based on dressed-photon-phonons. Further topics include: theoretical studies of optoelectronic properties of molecular condensates for organic solar cells and light-emitting devices, the basics of topological light beams together with their important properties for laser spectroscopy, spatially localized modes emerging in nonlinear discrete dynamic systems and theoretical methods to explore the dynamics of nanoparticles by the light-induced force of tailored light fields under thermal fluctuations. These topics are reviewed by leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
This volume provides an introduction to the state-of-the-art of controlled nanoscale motion in biological and artificial systems. Coverage includes the control and function of protein motors, the physics of non-equilibrium Brownian motion, and the physics and fabrication of synthetic molecular motors. The chapters in this book are based on selected contributions on the 2005 Nobel Symposium on Controlled Nanoscale Motion.
Today, biosensors are broadly applied in research, clinical diagnosis and monitoring, as well as in pharmaceutical, environmental or food analysis. In this work, the author presents the essentials that advanced students and researchers need to know in order to make full use of this technology. This includes a description of biochemical recognition elements, such as enzymes, antibodies, aptamers or even whole cells. Various signal transducers such as electrochemical and optical transducers, luminescence devices and advanced techniques such as quartz crystal microbalances and MEMS systems are covered as well. Current applications are introduced through various case studies, rounded out by a forward-looking chapter on the prospects for biosensor development offered by nanotechnology, lab-on-a-chip, and biomimetic systems.
Nanoscale Applications for Information and Energy Systems presents nanotechnology fundamentals and applications in the key research areas of information technology (electronics and photonics) and alternative (solar) energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching. The three major technology areas - electronics, photonics, and solar energy - are linked on the basis of similar applications of nanostructured materials in research and development. By bridging the materials physics and chemistry at the atomic scale with device and system design, integration, and performance requirements, tutorial chapters from worldwide leaders in the field provide a coherent picture of theoretical and experimental research efforts and technology development in these highly interdisciplinary areas.
This book brings together papers from all spheres of mechanical engineering related to gears and transmissions, from fundamentals to advanced applications, from academic results in numerical and experimental research, to new approaches to gear design and aspects of their optimization synthesis and to the latest developments in manufacturing. Furthermore, this volume honours the work of Faydor L. Litvin on the 100th anniversary of this birth. He is acknowledged as the founder of the modern theory of gearing. An exhaustive list of his contributions and achievements and a biography are included.
Optomechatronics, as a fusion of optical and mechatronic engineering, have played a key role in developing innovative products such as high precision instruments, defence, photonic systems, measurements, diagnostics, semiconductors, and so on. And optomechatronics technologies have greatly contributed to the state of the art industries in optics design, manufacturing, optical imaging, metrology, and other applications. This book covers a multitude of optomechatronics advantages and solutions. It includes 20 contributions featuring laser and fiber optics, nitride semiconductors, LIDAR technology, machine vision, optical imaging, micro optoelectro mechanical systems, optical metrology, optical-based sensors and actuators, optomechatronics for microscopes, optical pattern and fiber, optomechatronics for bio-medical applications, optomechatronics for manufacturing applications, robotics for micro and nano scales, and other applications. As revised and extended versions, the contributed articles are selected from the proceedings of the 2013 International Symposium on Optomechatronic Technologies held on Oct 28–30, 2013 in Jeju Island, Korea. |
![]() ![]() You may like...
Fuzzy Fractional Differential Operators…
Tofigh Allahviranloo
Hardcover
R3,056
Discovery Miles 30 560
Predictor Feedback for Delay Systems…
Iasson Karafyllis, Miroslav Krstic
Hardcover
R4,053
Discovery Miles 40 530
Ambulation Analysis in Wearable ECG
Subhasis Chaudhuri, Tanmay D. Pawar, …
Hardcover
R3,123
Discovery Miles 31 230
Proceedings of the Fourth International…
Mohan S., S. Sureshkumar
Hardcover
R4,713
Discovery Miles 47 130
Flow-Induced Vibration - Proceedings of…
S. Ziada, M. Samir, …
Hardcover
R8,181
Discovery Miles 81 810
Nonlinear Optimization in Finite…
Hubertus Th. Jongen, P. Jonker, …
Hardcover
R6,965
Discovery Miles 69 650
|