![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
Multiscale Dissipative Mechanisms and Hierarchical Surfaces covers the rapidly developing topics of hierarchical surfaces, roughness-induced superhydrophobicity and biomimetic surfaces. The research in these topics has been progressing rapidly in the recent years due to the advances in the nanosciences and surfaces science and due to potential applications in nanotechnology. The first in its field, this monograph provides a comprehensive review of these subjects and presents the background introduction as well as recent and new results in the area.
Intensive investigations on nanoscale magnetism have promoted remarkable progressintechnologicalapplicationsofmagnetisminvariousareas.Thete- nical progress of recent years in the preparations of multilayer thin ?lms and nanowires led to the discovery of Giant Magnetoresistance (GMR), imp- ing an extraordinary change in the resistivity of the material by varying the applied external magnetic ?eld. The Nobel Prize for Physics in 2007 was awardedtoAlbertFertandPeterGrun ] bergfortheirdiscoveryofGMR.App- cations of this phenomenon have revolutionizedtechniques for retrieving data fromharddisks.Thediscoveryalsoplaysamajorroleinvariousmagnetics- sors as well as the development of a new generation of electronics. The use of GMRcanberegardedasoneofthe?rstmajorapplicationsofnanotechnology. The GMR materials have already found applications as sensors of low magnetic ?eld, a key component of computer hard disk heads, magnetores- tive RAM chips etc. The "read" heads for magnetic hard disk drives have allowed us to increase the storage density on a disk drive from 1 to 20 Gbit per square inch, merely by the incorporation of the new GMR materials. On the other hand, recently discovered giant magneto-impedance (GMI) mate- als look very promising in the development of a new generation of microwave band electronic devices (such as switches, attenuators, and antennas) which could be managed electrically."
Nanofabrication and nanotechnology present a great challenge to engineers and researchers as they manipulate atoms and molecules to produce single artifacts and submicron components and systems. Micro and Nanomanufacturing provides a comprehensive treatment of established micro and nanofabrication techniques and addresses the needs of practicing manufacturing engineers by applying established and research laboratory manufacturing techniques to a wide variety of materials. Engineers seeking more knowledge of how nano and micro devices are designed and fabricated will learn about: Manufacturing and fabrication techniques at the micro and nanoscales; Using bulk and surface micromachining techniques, LiGA, and deep x-ray lithography to manufacture semiconductors; Producing master molds with micromachining; The deposition of thin films, pulsed water drop machining, and nanomachining. Mark J. Jackson is an Associate Professor in the Department of Mechanical Engineering Technology at Purdue University. His current research focuses on understanding the properties of materials in the field of micro scale metal cutting, micro and nano abrasive machining, and laser micro machining.
"Radioisotope Thin-Film Powered Microsystems" describes high energy density microbatteries required for compact long lifetime wireless sensor Microsystems. These microbatteries are presented alongside theories employing high energy density radioisotope thin films in actuating novel electromechanical energy converters. Also discussed are novel wireless sensor architectures that enable long lifetime wireless sensors Microsystems with minimal amounts of radioisotope fuel used. Ultra low-power beta radiation counting clocks are described in order to illustrate the application of radioisotope thin films in realizing the deployment of various components of Microsystems. "Radioisotope Thin-Film Powered Microsystems" also presents the latest work on 3D silicon electrovoltaic converters and energy density microbatteries required for high-power Microsystems.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Nano-Networks, Nano-Net, held in Boston, MS, USA, in September 2008. The 17 revised full papers presented together with 5 invited presentations were carefully reviewed and selected. The papers address the whole spectrum of Nano-Networks and spans topis like modeling, simulation, statdards, architectural aspects, novel information and graph theory aspects, device physics and interconnects, nanorobotics as well as nano-biological systems.
This book constitutes the refereed proceedings of the Second European Conference on Smart Sensing and Context, EuroSSC 2007, held in Kendal, England, October 23-25, 2007. The 16 revised full papers and one invited paper were carefully reviewed and selected from over 51 submissions. The papers are organized in topical sections on Spatial and Motion Context, Human Behavior as Context, Context Frameworks and Platforms and Sensing Technologies and Case Studies.
This book constitutes the refereed proceedings of the First European Conference on Smart Sensing and Context, EuroSSC 2006, held in Enschede, Netherlands in October 2006. The 15 revised full papers and 14 revised short papers presented were carefully reviewed and selected from over 50 submissions.
The book is the output of the NATO Advanced Study Institute on Optical Chemical Sensors and is 40th Course of the International School of Quantum Electronics and covers all the aspects related to optical chemical sensing by means of optical waveguides, from the fundamentals to the most recent applications. The book also provides a view through the history of the development of these sensors, from the first laboratory prototypes up to the first commercial instrumentations, and contains also the lecture given by the Nobel Prize Charles Townes on the birth of maser and laser, which is to be considered a very important illustration on how new science and new technology develop.
The book constitutes the refereed proceedings of the Third International Conference on Distributed Computing in Sensor Systems, DCOSS 2007, held in Sante Fe, NM, USA in June 2007. The 27 revised full papers presented were carefully reviewed and selected from 71 submissions. The papers class in three tracks covering the areas of algorithms, applications, and systems, thus bridging the gap between theory and practice and between the broader field of distributed computing and the specific issues arising in sensor networks and related systems.
The principal aim of this NATO Advanced Study Institute (ASI) "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" was to present a contemporary overview of the field of nanostructured and advanced electronic materials. Nanotechnology is an emerging scientific field receiving significant worldwide attention. On a nanometer scale, materials or structures may possess new and unique physical properties. Some of these are now known to the scientific community, but there may well be many properties not yet known to us, rendering it as a fascinating area of research and a suitable subject for a NATO ASI. Yet another aspect of the field is the possibility for creating meta-stable phases with unconventional properties and the ultra-miniaturization of current devices, sensors, and machines. Such nanotechnological and related advanced materials have an extremely wide range of potential applications, viz. nanoscale electronics, sensors, optoelectronics, photonics, nano-biological systems, na- medicine, energy storage systems, etc. This is a wide-ranging subject area and therefore requires the formation of multi-disciplinary teams of physicists, chemists, materials scientists, engineers, molecular biologists, pharmacologists, and others to work together on the synthesis and processing of materials and structures, the understanding of their physical properties, the design and fabrication of devices, etc. Hence, in formulating our ASI, we adopted an int- disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development.
The book Smart Sensors and MEMS provides an unique collection of contributions on latest achievements in sensors area and technologies that have made by eleven internationally recognized leading experts from Czech Republic, Germany, Italy, Israel, Portugal, Switzerland, Ukraine and USA during the NATO Advanced Study Institute (ASI) in Povoa de Varzim, Portugal, from 8 to 19 September 2003. The aims of this volume are to disseminate wider and in-depth theoretical and practical knowledge about smart sensors and its applications, to create a clear consciousness about the effectiveness of MEMS technologies, advanced signal processing and conversion methods, to stimulate the theoretical and applied research in these areas, and promote the practical using of these techniques in the industry. With that in mind, a broad range of physical, chemical and biosensors design principles, technologies and applications were included in the book. It is a first attempt to describe in the same book different physical, chemical, biological sensors and MEMS technologies suitable for smart sensors creation. The book presents the state-of-the-art and gives an excellent opportunity to provide a systematic, in-depth treatment of the new and rapidly developing field of smart sensors and MEMS. The volume is an excellent guide for practicing engineers, researchers and students interested in this crucial aspect of actual smart sensor design.
This book thoroughly reviews the present knowledge on silicon micromechanical transducers and addresses emerging and future technology challenges. Readers will acquire a solid theoretical and practical background that will allow them to analyze the key performance aspects of devices, critically judge a fabrication process, and then conceive and design new ones for future applications. Envisioning a future complex versatile microsystem, the authors take inspiration from Richard Feynman's visionary talk "There is Plenty of Room at the Bottom" to propose that the time has come to see silicon sensors as part of a "Feynman Roadmap" instead of the "More-than-Moore" technology roadmap. The sharing of the author's industrially proven track record of development, design, and manufacturing, along with their visionary approach to the technology, will allow readers to jump ahead in their understanding of the core of the topic in a very effective way. Students, researchers, engineers, and technologists involved in silicon-based sensor and actuator research and development will find a wealth of useful and groundbreaking information in this book.
This book provides both researchers in the academia, students, and industrial experts the chance to exchange new ideas, build relations, and find virtual partners. It is a scientific event whose proceedings have set a very high standard. ICORSE's distinctive feature is represented by its breadth of topics: mechatronics, integronics and adaptronics; reliable systems engineering; cyber-physical systems; optics; theoretical and applied mechanics; robotics; modelling and simulation; smart integrated control systems; computer imaging processing; smart bio-medical and bio-mechatronic systems; MEMS and NEMS; new materials; sensors and transducers; nano-chemistry, physical chemistry of biological systems; micro- and nanotechnology; system optimization; communications, renewable energy and environmental engineering. They all come together to deliver a clear picture of the state of the art reached in these areas so far.
This book explains the basic and fundamental aspects of nanotechnology and the potential use of nanostructured photocatalysts in various applications, especially in the context of the environment and energy harvesting. It describes the preparation and characterization of unique nanostructured photocatalysts and provides details of their catalytic action, and also discusses the design of new types of photocatalysts with controlled nanostructures. Given its broad scope, the book will appeal to academic and industrial researchers interested in heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors and surface and interface science.
This book presents the proceedings of SympoSIMM 2021, the 4th edition of the Symposium on Intelligent Manufacturing and Mechatronics. Focusing on "Strengthening Innovations Towards Industry 4.0", the book is divided into five parts covering various areas of manufacturing engineering and mechatronics stream, namely, intelligent manufacturing and artificial intelligence, Instrumentation and control, design modelling and simulation, process and machining technology, and smart material. The book will be a valuable resource for readers wishing to embrace the new era of Industry 4.0.
Optics is a science which covers a very large domain and is experiencing indisputable growth. It has enabled the development of a considerable number of instruments, the optical component or methodology of which is often the essential part of portent systems. This book sets out show how optical physical phenomena such as lasers - the basis of instruments of measurement - are involved in the fields of biology and medicine."Optics in Instruments: Applications in Biology and Medicine" details instruments and measurement systems using optical methods in the visible and near-infrared, as well as their applications in biology and medicine, through looking at confocal laser scanning microscopy, the basis of instruments performing in biological and medical analysis today, and flow cytometry, an instrument which measures at high speed the parameters of a cell passing in front of one or more laser beams. The authors also discuss optical coherence tomography (OCT), which is an optical imaging technique using non-contact infrared light, the therapeutic applications of lasers, where they are used for analysis and care, and the major contributions of plasmon propagation in the field of life sciences through instrumental developments, focusing on propagating surface plasmons (PSP) and localized plasmons (LP).Contents: 1. Confocal Laser Scanning Microscopy, Thomas Olivier and Baptiste Moine.2. Flow Cytometry (FCM) Measurement of Cells in Suspension, Odile Sabido.3. Optical Coherence Tomography, Claude Boccara and Arnaud Dubois.4. Therapeutic Applications of Lasers, Genevieve Bourg-Heckly and Serge Mordon.5. Plasmonics, Emmanuel Fort. About the Authors Jean-Pierre Goure is Emeritus Professor of optics at Jean Monnet University in Saint-Etienne, France, and was previously director of the UMR 5516 laboratory linked with CNRS. He is the author of more than 100 publications in various fields, such as spectroscopy, instrumentation, sensors, optical fiber and optical communications. He was also previously deputy director in engineering science at CNRS and a member of several scientific associations such as the French Optical Society and the European Optical Society.
Temperature Measurement covers nearly every type of temperature measurement device, in particular, bimetallic thermometers, filled bulb and glass stem thermometers, thermistors, thermocouples, and thermowells. Includes suppliers and prices.
This book presents the select proceedings of the 1st International 13th National Conference on Industrial Problems on Machines and Mechanism (IPRoMM 2020) and examines issues in the design, manufacture, and performance of mechanical and mechatronic elements and systems that are employed in modern machines and devices. The topics covered include robotics, industrial CAD/CAM systems, mechatronics, machinery associated with conventional and unconventional manufacturing systems, material handling and automated assembly, mechanical and electro-mechanical systems of modern machinery and equipment, micro-devices, compliant mechanisms, hybrid electric vehicle and electric vehicle mechanisms, acoustic and noise control. This book also discusses the recent advances in the integration of IoT and Industry 4.0 in mechanism and machines. The book will be a valuable reference for academicians, researchers, and professionals interested in the design and development of industrial machines.
This book includes selected peer-reviewed papers presented at third International Conference on Computational and Experimental Methods in Mechanical Engineering held in June 2021 at G.L. Bajaj Institute of Technology and Management, Greater Noida, U.P, India. The book covers broad range of topics in latest research including hydropower, heat transfer, fluid mechanics, advanced manufacturing, recycling and waste disposal, solar energy, thermal power plants, refrigeration and air conditioning, robotics, automation and mechatronics, and advanced designs. The authors are experienced and experts in their field, and all papers are reviewed by expert reviewers in respective field. The book is useful for industry peoples, faculties, and research scholars.
This new se ries is concerned with intercellular communication and recognition. It is now widely appreciated that these processes playa crucial role in virtually all biological systems and functions. These encompass fertilisation, embryonic development, infectious interactions, the activity of the nervous system, the regulation of growth and develop ment by hormones and the immune response to foreign or 'non-self antigens. Historically as described in the first review in this volume, the general concept of cell-associated receptors as the molecular entity primarily responsible for the specificity of signal recognition arose independently in the fields of immunology, pharmacology and developmental biology. From an early stage the analogy between cellular recognition and the discriminatory activity of antibodies and enzymes was emphasised. A vital conceptual advance, expressed most c1early by Linus Pauling and Paul Weiss, was the idea that non-covalent molecular interactions (of proteins in particular) were responsible forbiological specificity in in general. In the last decade several major advances have led to a new level of understanding of the molecular basis of cellular recognition. In several systems (in particular with neurotransmitters, hormones and antigens) it is possible to direct1y demonstrate the existence of receptors - associated in each case with the cell surface. These studies have been paralleled by equally important insights into the general structure and organisation of cell membranes and the possible ways in which signals arriving from the 'outside' can be transduced across the cell surface membrane to induce or regulate the cell's programmed responses."
Fractional-order Systems and Controls details the use of fractional calculus in the description and modeling of systems, and in a range of control design and practical applications. It is largely self-contained, covering the fundamentals of fractional calculus together with some analytical and numerical techniques and providing MATLAB (R) codes for the simulation of fractional-order control (FOC) systems. Many different FOC schemes are presented for control and dynamic systems problems. Practical material relating to a wide variety of applications is also provided. All the control schemes and applications are presented in the monograph with either system simulation results or real experimental results, or both. Fractional-order Systems and Controls provides readers with a basic understanding of FOC concepts and methods, so they can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.
This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This is a must-have reference for any engineer or manager associated with using or supplying cleaning and contamination free technologies for semiconductor manufacturing. From the Reviews... "This handbook will be a valuable resource for many academic
libraries. Many engineering librarians who work with a variety of
programs (including, but not limited to Materials Engineering)
should include this work in their collection. My recommendation is
to add this work to any collection that serves a campus with a
materials/manufacturing/electrical/computer engineering programs
and campuses with departments of physics and/or chemistry with
large graduate-level enrollment."
This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.
With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginning with a brief introduction to the basic concepts of process, process parameters, sensors and transducers, and classification of transducers, the book describes the performance characteristics of instrumentation and measurement systems and discusses static and dynamic characteristics, various types of sensor signals, and the concepts of signal representations, various transforms, and their operations in both static and dynamic conditions. It describes smart sensors, cogent sensors, soft sensors, self-validating sensors, VLSI sensors, temperature-compensating sensors, microcontrollers and ANN-based sensors, and indirect measurement sensors. The author examines intelligent sensor signal conditioning such as calibration, linearization, and compensation, along with a wide variety of calibration and linearization techniques using circuits, analog-to-digital converters (ADCs), microcontrollers, ANNs, and software. The final chapters highlight ANN techniques for pattern classification, recognition, prognostic diagnosis, fault detection, linearization, and calibration as well as important interfacing protocols in the wireless networking platform. |
You may like...
Pearson REVISE Edexcel GCSE Computer…
Ann Weidmann, Cynthia Selby
Paperback
R263
Discovery Miles 2 630
Phagocytosis of Dying Cells - From…
Dmitri V. Krysko, Peter Vandenabeele
Hardcover
R4,083
Discovery Miles 40 830
Rare and Interesting Cases in Pulmonary…
Ali Ataya, Eloise Harman
Paperback
R1,659
Discovery Miles 16 590
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach
Paperback
|