Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.
A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.
Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing. It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications. The processes and examples used in the book are primarily based on research carried out by Intel or joint academic research programs. Sensor Technologies: Healthcare, Wellness and Environmental Applications provides an extensive overview of sensing technologies and their applications in healthcare, wellness, and environmental monitoring. From sensor hardware to system applications and case studies, this book gives readers an in-depth understanding of the technologies and how they can be applied.I would highly recommend it to students or researchers who are interested in wireless sensing technologies and the associated applications. Dr. Benny Lo Lecturer, The Hamlyn Centre, Imperial College of London This timely addition to the literature on sensors covers the broad complexity of sensing, sensor types, and the vast range of existing and emerging applications in a very clearly written and accessible manner. It is particularly good at capturing the exciting possibilities that will occur as sensor networks merge with cloud-based 'big data' analytics to provide a host of new applications that will impact directly on the individual in ways we cannot fully predict at present. It really brings this home through the use of carefully chosen case studies that bring the overwhelming concept of 'big data' down to the personal level of individual life and health.Dermot Diamond Director, National Centre for Sensor Research, Principal Investigator, CLARITY Centre for Sensor Web Technologies, Dublin City University Sensor Technologies: Healthcare, Wellness and Environmental Applications takes the reader on an end-to-end journey of sensor technologies, covering the fundamentals from an engineering perspective, introducing how the data gleaned can be both processed and visualized, in addition to offering exemplar case studies in a number of application domains. It is a must-read for those studying any undergraduate course that involves sensor technologies. It also provides a thorough foundation for those involved in the research and development of applied sensor systems. I highly recommend it to any engineer who wishes to broaden their knowledge in this area Chris Nugent Professor of Biomedical Engineering, University of Ulster What you'll learnThe relevant sensing approaches and the hardware and software components required to capture and interpret sensor data. The importance of regulations governing medical devices.A design methodology for developing and deploying successful home- and community-based technologies, supported by relevant case studies. Health, wellness, and environmental sensing applications and how they work. The challenges and future directions of sensing in these domains. Who this book is for Sensor Technologies: Healthcare, Wellness and Environmental Applications is targeted at clinical and technical researchers, engineers, and students who want to understand the current state of the art in sensor applications in these domains. The reader gains a full awareness of the key technical and non-technical challenges that must be addressed in the development of successful end-to-end sensor applications. Real-world examples help give the reader practical insights into the successful development, deployment, and management of sensor applications. The reader will also develop an understanding of the personal, social, and ethical impact of sensor applications, now and in the future.
This book addresses reliability and energy efficiency of on-chip networks using cooperative error control. It describes an efficient way to construct an adaptive error control codec capable of tracking noise conditions and adjusting the error correction strength at runtime. Methods are also presented to tackle joint transient and permanent error correction, exploiting the redundant resources already available on-chip. A parallel and flexible network simulator is also introduced, which facilitates examining the impact of various error control methods on network-on-chip performance.
This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. The book presents the fundamentals, technical design and details and practical applications. Methods to design piezosensors are described, allowing to create sensors with unique properties. New methods to measure physical sizes and new constructions of sensors including large area of piezosensors are described in this book. This book is written for specialists in transforming hydroacoustics, non-destructive control, measuring technique, sensors development for automatic control and also for graduate students.
A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding modern electronic devices and also be prepared for future developments and advancements in this far-reaching area of science and technology.
Nanofins Science and Technology describes the heat transfer effectiveness of polymer coolants and their fundamental interactions with carbon nanotube coatings that act as nanofins. Heat transfer at micro/nano-scales has attracted significant attention in contemporary literature. This has been primarily driven by industrial requirements where significant decrease in the size of electronic devices/chips with concomitant enhancement in the heat flux have caused challenging needs for cooling of these platforms. With quantum effects kicking in, traditional cooling techniques need to be replaced with more effective technologies. A promising technique is to enhance heat transfer by surface texturing using nanoparticle coatings or engineered nanostructures. These nanostructures are termed as nanofins because they augment heat transfer by a combination of surface area enhancement as well as liquid-solid interactions at the molecular scale.
This is the third volume in a series of books on selected topics in Nanoscale Science and Technology based on lectures given at the well-known Istituto Nazionale di Fisica Nucleare (INFN) schools of the same name. The present set of notes stems in particular from the participation and dedication of prestigious lecturers, such as Nunzio Motta, Fulvia Patella, Alexandr Toropov, and Anna Sgarlata. All lectures have been carefully edited and reworked, taking into account extensive follow-up discussions. A tutorial lecture by Motta et al. presents the analysis of the Poly(3-hexylthiophene) self assembly on carbon nanotubes and discusses how the interaction between the two materials forms a new hybrid nanostructure, with potential application to future solar cells technology. In their contribution, Patella et al. review quantum dots of III-V compounds, which offer appealing perspectives for more sophisticated applications in new generation devices such as single-photon emitters for nano-photonics and quantum computing. Focusing on self-assembled quantum dots, the chapter by Alexandr Toropov et al. provides a comprehensive review of some important aspects in the formation of quantum dots and presents the results of the authors' extensive investigation of the features of droplet epitaxy. The fourth contribution, by Sgarlata et al., focuses on recent progress toward controlled growth of self-assembled nanostructures, dealing with the shaping, ordering and localization in Ge/Si heteroepitaxy and reviewing recent results on the self-organization of Ge nanostructures at Si surfaces.
Nanoencapsulation has the potential to improve human health through its capacity to both protect bioactive compounds and release them at a specific time and location into various substances, including food. Numerous nanoencapsulation technologies have emerged in recent years, each with its own advantages and disadvantages. The goal of this Brief is to discuss the various nanoencapsulation technologies, such as emulsification, coacervation, inclusion encapsulation, anti-solvent precipitation, nanoprecipitation, freeze drying, and spray drying, including their limitations. Recent safety and regulatory issues concerning the various nanoencapsulation technologies will also be covered.
Among the most promising techniques to handle small objects at the micrometer scale are those that employ electrical forces, which have the advantages of voltage-based control and dominance over other forces. The book provides a state-of-the-art knowledge on both theoretical and applied aspects of the electrical manipulation of colloidal particles and fluids in microsystems and covers the following topics: dielectrophoresis, electrowetting, electrohydrodynamics in microsystems, and electrokinetics of fluids and particles. The book is addressed to doctoral students, young or senior researchers, chemical engineers and/or biotechnologists with an interest in microfluidics, lab-on-chip or MEMS.
The aesthetically pleasing molecular architectures of fullerenes and nanotubes are appealing not only because of their beauty but also because they are responsible for the many unprecedented chemical and physical properties of this compound class. Although succession of exciting new discoveries continues unabated fullerene research has become a mature science. It is now possible to predict fullerene chemistry, to design new structure variations like open fullerene clusters, heterofullerenes and endohedral fullerenes, and to develop fullerene materials and modified nanotubes with high potential for technological applications. This volume represents the state-of-the-art of fullerene research, focussing on areas showing high potential for future growth and practical applications. The authors are leading scientists whose groups are making major contributions in the field.
Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.
This book results from a NATO Advanced Research Workshop titled "Technological Innovations in CBRNE Sensing and Detection for Safety, Security, and Sustainability" held in Yerevan, Armenia in 2012. The objective was to discuss and exchange views as to how fusion of advanced technologies can lead to improved sensors/detectors in support of defense, security, and situational awareness. The chapters range from policy and implementation, advanced sensor platforms using stand-off (THz and optical) and point-contact methods for detection of chemical, nuclear, biological, nuclear and explosive agents and contaminants in water, to synthesis methods for several materials used for sensors. In view of asymmetric, kinetic, and distributed nature of threat vectors, an emphasis is placed to examine new generation of sensors/detectors that utilize an ecosystems of innovation and advanced sciences convergence in support of effective counter-measures against CBRNE threats. The book will be of considerable interest and value to those already pursuing or considering careers in the field of nanostructured materials, and sensing/detection of CBRNE agents and water-borne contaminants. For policy implementation and compliance standpoint, the book serves as a resource of several informative contributions. In general, it serves as a valuable source of information for those interested in how nanomaterials and nanotechnologies are advancing the field of sensing and detection using nexus of advanced technologies for scientists, technologists, policy makers, and soldiers and commanders.
The book describes the design of micro systems systematically as well as the equations needed for an estimation of the basic elements. It can be used without knowing fabrication processes of micro systems and provides the basic equations needed to calculate the effects and forces which are important in micro systems. For quick reference equations are presented in tables which are found in an index at the end of this book.
MEMS and Nanotechnology, Volume 4 represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.
Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.
The synergism of the mechanics of nondestructive testing and the mechanics of materials response has great potential value in an era of rapid development of new materials and new applications for con ventional materials. The two areas are closely related and an advance in one area often leads to an advance in the other. As our understanding of basic principles increases, nondestructive testing is outgrowing the image of "black box techniques" and is rapidly becoming a legitimate technical area of science and engineering. At the present time, however, an understanding of the mechanics of nondestructive testing is lagging behind other advances in the field. The key to further development in the mechanics of nondestructive testing lies in the mechanics of the phenomena or response being investigated - a better understanding of materials response suggests better nondestructive test methods to investigate the response which, in turn, advances our understanding of materials response, and so on. With this approach in mind, the Materials Response Group of the Engineering Science and Mechanics Department at Virginia Polytechnic Institute and State University hosted a Conference on the Mechanics of Nondestructive Testing on September 10 through 12, 1980. Sponsors of the conference were the Army Research Office, the National Science Foundation, and the Engineering Science and Mechanics Department."
In recent years microelectromechanical systems (MEMS) have emerged as a new technology with enormous application potential. MEMS manufacturing techniques are essentially the same as those used in the semiconductor industry, therefore they can be produced in large quantities at low cost. The added benefits of lightweight, miniature size and low energy consumption make MEMS commercialization very attractive. Modeling and simulation is an indispensable tool in the process of studying these new dynamic phenomena, development of new microdevices and improvement of the existing designs. MEMS technology is inherently multidisciplinary since operation of microdevices involves interaction of several energy domains of different physical nature, for example, mechanical, fluidic and electric forces. Dynamic behavior of contact-type electrostatic microactuators, such as a microswitches, is determined by nonlinear fluidic-structural, electrostatic-structural and vibro-impact interactions. The latter is particularly important: Therefore it is crucial to develop accurate computational models for numerical analysis of the aforementioned interactions in order to better understand coupled-field effects, study important system dynamic characteristics and thereby formulate guidelines for the development of more reliable microdevices with enhanced performance, reliability and functionality.
Humanhairisananocompositebiological?ber. Maintainingthehealth,feel,shine, color,softness,andoverallaestheticsofthehairishighlydesired. Haircarepr- ucts such as shampoos and conditioners, along with damaging processes such as chemical dyeing and permanent wave treatments, affect the maintenance and groomingprocessandareimportanttostudybecausetheyaltermanyhairprop- ties. Nanoscalecharacterizationofthecellularstructure,mechanicalproperties,and morphological, frictional,andadhesive properties(tribologicalproperties)ofhair areessentialtoevaluateanddevelopbettercosmeticproductsandtoadvancethe understandingofbiologicalandcosmeticscience. Theatomic/frictionforcemic- scope(AFM/FFM)andnanoindenterhavebecomeimportanttoolsforstudyingthe micro/nanoscalepropertiesofhumanhair. Inthisbook,wepresentacomprehensive review of structural, nanomechanical, and nanotribological properties of various hairandskinasafunctionofethnicity,damage,conditioningtreatment,andvarious environments. Variouscellularstructuresofhumanhairand?nesublamellarstr- turesofthecuticleareidenti?edandstudied. Nanomechanicalpropertiessuchas hardness,elasticmodulus,tensiledeformation,fatigue,creep,andscratchresistance arediscussed. Nanotribologicalpropertiessuchasroughness,friction,andadhesion are presented, as well as investigations of conditioner distribution, thickness, and bindinginteractions. Tounderstandtheelectrostaticchargebuilduponhair,surface potentialstudiesarealsopresented. Thebookshouldserveasareferencebookonthebiophysicsofhumanhairand hairtreatments. TheresearchreportedinthisbookwassupportedbyProcter&GambleCo. in Cincinnati,Ohio,andKobe,Japan. IwouldliketothankCarmenLaTorrewhohad assistedinvariouspublicationsonhairresearch. Iwouldalsoliketothankmywife Sudha,whohasbeenforbearingduringthepreparationofthisbook. Powell,OH BharatBhushan November2010 v Contents 1 Introduction-Human Hair, Skin, and Hair Care Products...1 1. 1 HumanHair ...1 1. 1. 1 TheCuticle ...3 1. 1. 2 TheCortexandMedulla...6 1. 2 Skin...7 1. 3 HairCare:CleaningandConditioningTreatments,andDamaging Processes ...10 1. 3. 1 CleaningandConditioningTreatments:Shampoo andConditioner...13 1. 3. 2 DamagingProcesses...18 1. 4 OrganizationoftheBook ...19 2 Experimental Methods...21 2. 1 ExperimentalApparatuses...23 2. 2 ExperimentalProcedure ...26 2. 2. 1 StructuralCharacterizationUsinganAFM...26 2. 2. 2 SurfacePotentialStudiesUsingAFM-Based KelvinProbeMicroscopy...29 2. 2. 3 NanomechanicalCharacterizationUsingNanoindentation ...30 2. 2. 4 InSituTensileDeformationCharacterizationUsingAFM ...32 2. 2. 5 Macroscale Tribological Characterization UsingaFrictionTestApparatus...33 2. 2. 6 Micro/nanotribologicalCharacterizationUsinganAFM...35 2. 3 HairandSkinSamples ...41 3 Structural Characterization Using an AFM ...45 3. 1 StructureofHairCrossSectionandLongitudinalSection ...45 3. 1. 1 CrossSectionofHair...45 3. 1. 2 LongitudinalSectionofHair...45 3. 2 StructureofVariousCuticleLayers...48 3. 2. 1 VirginHair...48 vii viii Contents 3. 2. 2 ChemicallyDamagedHair...50 3. 2. 3 Conditioner-TreatedHair...52 3. 2. 4 EffectofHumidityonMorphologyandCellularStructure ofHairSurface...54 3. 3 Summary...55 4 Nanomechanical Characterization Using Nanoindentation, Nanoscratch, and AFM...57 4. 1 Hardness,Young'sModulus,andCreep...
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic-Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C-C Main Chain from One Carbon Unit By E. Ihara
Thisbookistalkingabouthowtousesupercriticalwater(SCW)torapidlyproduce micro- and nano-particles of metal oxides, inorganic salts, metals and organics. Itcoversbasicprinciples,experimentalmethodologiesandreactors,particlep- duction,characterizationsandapplicationsaswellastherecentadvancement. Fine particlescanbeproducedbybothchemicalandphysicalprecipitationofproducts from SCW. They can be used as catalysts, materials in ceramics and electronic devices andcompositematerials. Particlesareeasilyproduced continuouslyina owreactorinshortreactiontimes(0. 4s?2min)butcanalsobesynthesizedin batchreactorsforlongreactiontimes(e. g. ,12h). Theycanbeeasilystudiedin-situ microscopically(optical/IR/Raman/SR-XRD)inanopticalmicro-reactor,diamond anvilcell. Thesize,sizedistribution,crystalgrowth&structure,andmorphologyof particlescanbecontrolledbychangingtheconcentrationsofstatingmaterials,pH, pressures,temperatures,heating&coolingrates,organicmodi cations,reducingor oxidizingatmospheres, owratesandreactiontimes. Thisisthe rstbooktosystematicallyintroduceusingSCWforproductionof neparticles. Itisanidealreferencebookforengineers,researchersandgraduate studentsinmaterialscienceandengineering. vii Acknowledgments I would like to thank Drs. T. Ogi & T. Minowa (Biomass Technology Research Center,NationalInstituteofAdvancedIndustrialScienceandTechnology,Japan), and Profs. K. Arai, H. Inomata, R. L. Smith Jr. and T. Adschiri (Chemical Engineering,TohokuUniversity,Japan),whoinitiallyintroducedthehydrothermal andsupercritical uidsareastomewhenIworkedinJapanfrom1996to1999. Thanks are also due to Profs. J. A. Kozinski, R. I. L. Guthrie (Materials Engineering,McGillUniversity,Canada)andI. S. Butler(Chemistry,McGill)for theirguidanceinmyworkonhydrothermalprocessduringmyworkinCanadafrom 1999to2007. Profs. W. Bassett (Geological Sciences, Cornell University) and D. Baker (Earth&PlanetarySciences,McGill)forinstructionsregardingDAC,Dr. I-Ming Chou(U. S. GeologicalSurvey)forusefuldiscussionsofthepressurecalculation procedure. Drs. M. Watanabe and T. Sato (Research Center of Supercritical Fluid Technology, Tohoku University, Japan) for discussions about the experimental set-upofthebatchand owreactors. Drs. S. Xu,H. Assaaoudi,R. HashaikehandA. Sobhy,whoworkedwithmeat McGillinCanada. ix Contents 1 Introduction...1 1. 1 Background ...1 1. 2 RapidExpansionofSupercriticalSolution(RESS)Process ...4 1. 3 SupercriticalAntisolvent(SAS)Process ...4 1. 4 OtherPhysicalProcesses ...5 1. 5 SupercriticalWaterProcess ...5 References...8 2 Supercritical Water Process...11 2. 1 Introduction ...11 2. 2 BatchReactor ...15 2. 3 FlowReactor...18 2. 4 DiamondAnvilCell(DAC)...20 References...25 3 Metal Oxides Synthesis...29 3. 1 Introduction ...29 3. 2 Boehmite(AlOOH) ...30 3. 3 Ferrites...31 3. 4 Phosphor(YAG) ...32 3. 5 LiCoO /LiMn O ...33 2 2 4 3. 6 Ce Zr O (x =0?1)...33 1?x x 2 3. 7 PotassiumHexatitanate,PotassiumNiobateandTitania ...35 3. 8 ZincOxide...38 3. 9 Nickel,Nickel/CobaltOxide...
A survey of the machinery and science of the nanometer scale. Its twenty-two contributing authors, drawn from many different disciplines including atomic physics, microelectronics, polymer chemistry, and biophysics, delineate the course of current research and articulate a vision for the development of the nanometer frontiers in electronics, mechanics, chemistry, magnetics, materials, and biology. They reveal a world thirty years hence where motors are smaller than the diameter of a human hair; where single-celled organisms are programmed to fabricate materials with nanometer precision; where single atoms are used for computation, and where quantum chaos is the norm. Aimed at the level of at least a junior- or senior- level undergraduate in biology, chemistry, physics, or engineering. |
You may like...
Interdigital Sensors - Progress over the…
Subhas Chandra Mukhopadhyay, Boby George, …
Hardcover
R4,536
Discovery Miles 45 360
Handbook on Synthesis Strategies for…
A.K. Tyagi, Raghumani S. Ningthoujam
Hardcover
R3,060
Discovery Miles 30 600
Multiscaled PVA Bionanocomposite Films…
Mohanad Mousa, Yu Dong
Hardcover
R3,509
Discovery Miles 35 090
New Advances in Mechanisms, Mechanical…
Erwin Christian Lovasz, Inocentiu Maniu, …
Hardcover
R5,541
Discovery Miles 55 410
Immobilization Strategies - Biomedical…
Anuj Tripathi, Jose Savio Melo
Hardcover
R4,312
Discovery Miles 43 120
Intelligent Machining of Complex…
Dinghua Zhang, Ming Luo, …
Hardcover
R4,580
Discovery Miles 45 800
|