![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book addresses the important clinical problem of accurately diagnosing osteoporosis, and analyzes how Bone Turnover Markers (BTMs) can improve osteoporosis detection. In her research, the author integrated microfluidic technology with electrochemical sensing to embody a reaction/detection chamber to measure serum levels of different biomarkers, creating a microfluidic proteomic platform that can easily be translated into a biomarker diagnostic. The Osteokit System, a result of the integration of electrochemical system and microfluidic chips, is a unique design that offers the potential for greater sensitivity. The implementation, feasibility, and specificity of the Osteokit platform is demonstrated in this book, which is appropriate for researchers working on bone biology and mechanics, as well as clinicians.
This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.
This book presents basic and advanced concepts for energy harvesting and energy efficiency, as well as related technologies, methods, and their applications. The book provides up-to-date knowledge and discusses the state-of-the-art equipment and methods used for energy harvesting and energy efficiency, combining theory and practical applications. Containing over 200 illustrations and problems and solutions, the book begins with overview chapters on the status quo in this field. Subsequent chapters introduce readers to advanced concepts and methods. In turn, the final part of the book is dedicated to technical strategies, efficient methods and applications in the field of energy efficiency, which also makes it of interest to technicians in industry. The book tackles problems commonly encountered using basic methods of energy harvesting and energy efficiency, and proposes advanced methods to resolve these issues. All the methods proposed have been validated through simulation and experimental results. These "hot topics" will continue to be of interest to scientists and engineers in future decades and will provide challenges to researchers around the globe as issues of climate change and changing energy policies become more pressing.Here, readers will find all the basic and advanced concepts they need. As such, it offers a valuable, comprehensive guide for all students and practicing engineers who wishing to learn about and work in these fields.
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the "solid-solid" reaction instead of the "sulfur-polysulfides-lithium sulfides" reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
This book covers new materials used as analytical devices for increasing the interactions between the development of new analytical devices and materials science. The authors describe how different types of materials such as polymers, self-assembled layers, phthalocyanines, and nanomaterials can further enhance sensitivity and promote selectivity between analytes for different applications. They explain how continuing research and discussion into materials science for chemical sensing is stimulating the search for different strategies and technologies that extract information for these chemical sensors in order to obtain a chemical fingerprint of samples.
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport...), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science...). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Leon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Remi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Leon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphee research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry.
This book introduces the various aspects of the emerging field of carbon dots. Their structural and physico-chemical properties as well as their current and future potential applications are covered. A special chapter on graphene quantum dots is provided. The reader will also find different synthesis routes for carbon quantum dots.
This book includes the original, peer-reviewed research from the 2nd International Conference on Emerging Trends in Electrical, Communication and Information Technologies (ICECIT 2015), held in December, 2015 at Srinivasa Ramanujan Institute of Technology, Ananthapuramu, Andhra Pradesh, India. It covers the latest research trends or developments in areas of Electrical Engineering, Electronic and Communication Engineering, and Computer Science and Information.
This book describes the wave characteristics of contact lines taking wind into consideration and discusses new methods for detecting catenary geometry, pantograph slide fault, and catenary support system faults. It also introduces wire-irregularity detection methods for catenary estimation, and discusses modern spectrum estimation tools for catenary. It is organized in three parts: the first discusses statistical characteristics of pantograph-catenary data, such as stationarity, periodicity, correlation, high-order statistical properties and wave characteristics of contact lines, which are the basis of pantograph-catenary relationship analysis. The second part includes geometry parameter detection and support-system fault detection in catenary, as well as slide-fault detection in pantographs, and presents some new detection algorithms and plans. The final part addresses catenary estimation, including detection of contact-line wire irregularities and estimation of catenary based on spectrum, and presents detection methods for contact-line irregularity and modern spectrum estimation tools for catenary.
This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
This book covers smart polymer nanocomposites with perspectives for application in energy harvesting, as self-healing materials, or shape memory materials. The book is application-oriented and describes different types of polymer nanocomposites, such as elastomeric composites, thermoplastic composites, or conductive polymer composites. It outlines their potential for applications, which would meet some of the most important challenges nowadays: for harvesting energy, as materials with the capacity to self-heal, or as materials memorizing a given shape.The book brings together these different applications for the first time in one single platform. Chapters are ordered both by the type of composites and by the target applications. Readers will thus find a good overview, facilitating a comparison of the different smart materials and their applications. The book will appeal to scientists in the fields of chemistry, material science and engineering, but also to technologists and physicists, from graduate student level to researcher and professional.
This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human-machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots.
This book focuses on controlling morphology of different scales for polymers. The authors explain the need for successful control of morphology to yield target macroscopic physical properties in the application of polymers to diverse areas such as engineering materials, nanodielectrics and photonic crystals. The book combines specialized chapters with an introduction to the morphology of polymers and the range of experimental techniques available to evaluate it.
This Brief will focus on the functional uses and applications of FRET, starting with the derivation of FRET in the assemblies of nanostructures and subsequently giving application cases for biologists, physicists, chemists, material scientists, engineers, and those in many other fields whoever would like to FRET as a tool. The goal of this part is therefore to show both specialist and non-specialist how to use and analyze FRET in a wide range of applications.
Nanotechnology in Dermatology is the first book of its kind to address all of the important and rapidly growing aspects of nanotechnology as it relates to dermatology. In the last few years there has been an explosion in research and development for products and devices related to nanotechnology, including numerous applications for consumers, physicians, patients, and industry. Applications are underway in medicine and dermatology for the early detection, diagnosis, and targeted therapy of disease, and nanodesigned materials and devices are expected to be faster, smaller, more powerful, more efficient, and more versatile than their traditional counterparts. Written by experts working in this exciting field, Nanotechnology in Dermatology specifically addresses nanotechnology in consumer skin care products, in the diagnosis of skin disease, in the treatment of skin disease, and the overall safety of nanotechnology. The book also discusses future trends of this ever-growing and changing field, providing dermatologists, pharmaceutical companies, and consumer cosmetics companies with a clear understanding of the advantages and challenges of nanotechnology today.
This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.
Finite element analysis is a basic foundational topic that all engineering majors need to understand in order for them to be productive engineering analysts for a variety of industries. This book provides an introductory treatment of finite element analysis with an overview of the various fundamental concepts and applications. It introduces the basic concepts of the finite element method and examples of analysis using systematic methodologies based on ANSYS software. Finite element concepts involving one-dimensional problems are discussed in detail so the reader can thoroughly comprehend the concepts and progressively build upon those problems to aid in analyzing two-dimensional and three-dimensional problems. Moreover, the analysis processes are listed step-by-step for easy implementation, and an overview of two-dimensional and three-dimensional concepts and problems is also provided. In addition, multiphysics problems involving coupled analysis examples are presented to further illustrate the broad applicability of the finite element method for a variety of engineering disciplines. The book is primarily targeted toward undergraduate students majoring in civil, biomedical, mechanical, electrical, and aerospace engineering and any other fields involving aspects of engineering analysis.
This book focuses on nanorobotic agents and stem cells for biomedical applications.It is intended for researchers and clinicians interested in innovative diagnostic and therapeutic strategies based on nanorobots and stem cells.It presents current advances in the field of molecular machines, which could be applied to generate novel therapeutic-diagnostic systems.
This book reveals how polymer blending and grafting now offer a growing range of new applications for advanced films and fibers. Further, it details how the processing and original physical properties of cellulosics can be improved, and demonstrates how new, cellulose-core polymeric materials offer a wide range of synergistic functionalities. Lastly, it summarizes basic characterization studies and successful fabrications of advanced films and fibers. The book is primarily intended for advanced undergraduates, academic and industrial researchers and professionals studying or using bio-based polymers.
This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and microstructure investigation techniques. The book presents and discusses the experimental results in detail, and offers suggestions for future research directions.
This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.
The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterials and their applications with chemical engineering rules that educates the readers about nanosclale process design, simulation, modelling and optimization. Briefly, the book takes the readers through a journey from fundamentals to frontiers of engineering of nanoscale processes and informs them about industrial perspective research challenges, opportunities and synergism in chemical Engineering and nanotechnology. Utilising this information the readers can make informed decisions on their career and business.
This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community. |
You may like...
Electronic Nose Technologies and…
Yousif Al-Bastaki, Fatema Albalooshi
Hardcover
R5,120
Discovery Miles 51 200
MEMS: Field Models and Optimal Design
Paolo Di Barba, Slawomir Wiak
Hardcover
R3,335
Discovery Miles 33 350
|