![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets.
This book provides readers with an overview of the design, fabrication, simulation, and reliability of nanoscale semiconductor devices, MEMS, and sensors, as they serve for realizing the next-generation internet of things. The authors focus on how the nanoscale structures interact with the electrical and/or optical performance, how to find optimal solutions to achieve the best outcome, how these apparatus can be designed via models and simulations, how to improve reliability, and what are the possible challenges and roadblocks moving forward.
This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.
This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.
This book provides in-depth theoretical and practical information on recent advances in micro-manufacturing technologies and processes, covering such topics as micro-injection moulding, micro-cutting, micro-EDM, micro-assembly, micro-additive manufacturing, moulded interconnected devices, and microscale metrology. It is designed to provide complementary material for the related e-learning platform on micro-manufacturing developed within the framework of the Leonardo da Vinci project 2013-3748/542424: MIMAN-T: Micro-Manufacturing Training System for SMEs. The book is mainly addressed to technicians and prospective professionals in the sector and will serve as an easily usable tool to facilitate the translation of micro-manufacturing technologies into tangible industrial benefits. Numerous examples are included to assist readers in learning and implementing the described technologies. In addition, an individual chapter is devoted to technological foresight, addressing market analysis and business models for micro-manufacturers.
This volume provides a comprehensive reference for graduate students and professionals in both academia and industry on the fundamentals, processing details, and applications of 3D microelectronic packaging, an industry trend for future microelectronic packages. Chapters written by experts cover the most recent research results and industry progress in the following areas: TSV, die processing, micro bumps, direct bonding, thermal compression bonding, advanced materials, heat dissipation, thermal management, thermal mechanical modeling, quality, reliability, fault isolation, and failure analysis of 3D microelectronic packages. Numerous images, tables, and didactic schematics are included throughout. This essential volume equips readers with an in-depth understanding of all aspects of 3D packaging, including packaging architecture, processing, thermal mechanical and moisture related reliability concerns, common failures, developing areas, and future challenges, providing insights into key areas for future research and development.
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.
The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).
This book is a single-source guide to nonlinearity and nonlinear techniques in energy harvesting, with a focus on vibration energy harvesters for micro and nanoscale applications. The authors demonstrate that whereas nonlinearity was avoided as an undesirable phenomenon in early energy harvesters, now it can be used as an essential part of these systems. Readers will benefit from an overview of nonlinear techniques and applications, as well as deeper insight into methods of analysis and modeling of energy harvesters, employing different nonlinearities. The role of nonlinearity due to different aspects of an energy harvester is discussed, including nonlinearity due to mechanical-to-electrical conversion, nonlinearity due to conditioning electronic circuits, nonlinearity due to novel materials (e.g., graphene), etc. Coverage includes tutorial introductions to MEMS and NEMS technology, as well as a wide range of applications, such as nonlinear oscillators and transducers for energy harvesters and electronic conditioning circuits for effective energy processing.
This second edition of Nanofabrication is one of the most comprehensive introductions on nanofabrication technologies and processes. A practical guide and reference, this book introduces readers to all of the developed technologies that are capable of making structures below 100nm. The principle of each technology is introduced and illustrated with minimum mathematics involved. Also analyzed are the capabilities of each technology in making sub-100nm structures, and the limits of preventing a technology from going further down the dimensional scale. This book provides readers with a toolkit that will help with any of their nanofabrication challenges.
This book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular
This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.
Leading researchers from industry, academy, government and private research institutions across the globe have contributed to this book, which presents all types of rubber blend composites based on biomaterials as well as nanocomposites. It discusses the fundamental preparation methods of these materials and summarizes many of the latest technical research advances, offering an essential guide for academics, researchers, scientists, engineers and students alike.
This book details all current techniques for converting bulk polymers into nano-size materials. The authors highlight various physical and chemical approaches for preparation of nano-size polymers. They describe the properties of these materials and their extensive potential commercial applications.
This book approaches the design of active vibration control systems from the perspective of today's ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB (R)routines, Simulink (R) diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Three major problems are addressed in the book: active damping to improve the performance of passive absorbers; adaptive feedback attenuation of single and multiple tonal vibrations; and feedforward and feedback attenuation of broad band vibrations. Adaptive and Robust Active Vibration Control will interest practising engineers and help them to acquire new concepts and techniques with good practical validation. It can be used as the basis for a course for graduate students in mechanical, mechatronics, industrial electronics, aerospace and naval engineering. Readers working in active noise control will also discover techniques with a high degree of cross-over potential for use in their field.
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
This book gives a state-of-the-art view by recognized researchers of the nanotechnologies required for future integrated systems leading to innovations in energy, the environment, and biotechnologies. Nanostructures that would be difficult to form using the current semiconductor technology will be realized using a combination of bottom-up and top-down processes, including hybrid nanostructures made of inorganic and organic/biological materials. Bio-sensing, imaging, and cell or molecular manipulation are discussed in Chapters 2-7. The acquisition of basic knowledge on the cellular level will lead to curing serious diseases. Also, nanofabrication technologies, discussed in Chapters 8-15, will lead to next-generation solar cells, secondary batteries, and advanced electronic circuits using nanostructured materials, thus providing solutions for serious energy and environment issues. Prospective readers of this book include graduate students as well as researchers and engineers working in this field.
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
This book introduces the state-of-the-art technologies in mechatronics, robotics, and MEMS devices in order to improve their methodologies. It provides a follow-up to "Advanced Mechatronics and MEMS Devices" (2013) with an exploration of the most up-to-date technologies and their applications, shown through examples that give readers insights and lessons learned from actual projects. Researchers on mechatronics, robotics, and MEMS as well as graduate students in mechanical engineering will find chapters on: Fundamental design and working principles on MEMS accelerometers Innovative mobile technologies Force/tactile sensors development Control schemes for reconfigurable robotic systems Inertial microfluidics Piezoelectric force sensors and dynamic calibration techniques ...And more. Authors explore applications in the areas of agriculture, biomedicine, advanced manufacturing, and space. Micro-assembly for current and future industries is also considered, as well as the design and development of micro and intelligent manufacturing.
This book presents the most important aspects of analysis of dynamical processes taking place on the human body surface. It provides an overview of the major devices that act as a prevention measure to boost a person's motivation for physical activity. A short overview of the most popular MEMS sensors for biomedical applications is given. The development and validation of a multi-level computational model that combines mathematical models of an accelerometer and reduced human body surface tissue is presented. Subsequently, results of finite element analysis are used together with experimental data to evaluate rheological properties of not only human skin but skeletal joints as well. Methodology of development of MOEMS displacement-pressure sensor and adaptation for real-time biological information monitoring, namely "ex vivo" and "in vitro" blood pulse type analysis, is described. Fundamental and conciliatory investigations, achieved knowledge and scientific experience about biologically adaptive multifunctional nanocomposite materials, their properties and synthesis compatibility, periodical microstructures, which may be used in various optical components for modern, productive sensors' formation technologies and their application in medicine, pharmacy industries and environmental monitoring, are presented and analyzed. This book also is aimed at research and development of vibrational energy harvester, which would convert ambient kinetic energy into electrical energy by means of the impact-type piezoelectric transducer. The book proposes possible prototypes of devices for non-invasive real-time artery pulse measurements and micro energy harvesting.
This book addresses the important clinical problem of accurately diagnosing osteoporosis, and analyzes how Bone Turnover Markers (BTMs) can improve osteoporosis detection. In her research, the author integrated microfluidic technology with electrochemical sensing to embody a reaction/detection chamber to measure serum levels of different biomarkers, creating a microfluidic proteomic platform that can easily be translated into a biomarker diagnostic. The Osteokit System, a result of the integration of electrochemical system and microfluidic chips, is a unique design that offers the potential for greater sensitivity. The implementation, feasibility, and specificity of the Osteokit platform is demonstrated in this book, which is appropriate for researchers working on bone biology and mechanics, as well as clinicians. |
You may like...
Essential Methods for Design Based…
Danny Pfeffermann, C.R. Rao
Paperback
R1,389
Discovery Miles 13 890
Traffic and Granular Flow '15
Victor L. Knoop, Winnie Daamen
Hardcover
R4,190
Discovery Miles 41 900
Time Series Analysis: Methods and…
Tata Subba Rao, Suhasini Subba Rao, …
Hardcover
R4,435
Discovery Miles 44 350
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Shrinkage Estimation
Dominique Fourdrinier, William E Strawderman, …
Hardcover
R3,678
Discovery Miles 36 780
|