![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book presents and discusses recent developments in the broad field of spectroscopy, providing the reader with an updated overview. The main objective is to introduce them to recent innovations and current trends in spectroscopy applied to molecules and materials. The book also brings together experimentalists and theoreticians to highlight the multidimensional aspects of spectroscopy and discuss the latest issues. Accordingly, it provides insights not only into the general goals of spectroscopy, but also into how the various spectroscopic techniques represent a toolbox that can be used to gain a more detailed understanding of molecular systems and complex chemical problems. Besides technical aspects, basic theoretical interpretations of spectroscopic results are also presented. The spectroscopy techniques discussed include UV-visible absorption spectroscopy, Raman spectroscopy, IR absorption spectroscopy, fluorescence spectroscopy, and time-resolved spectroscopy. In turn, basic tools like lasers and theoretical modeling approaches are also presented. Lastly, applications for the characterization of fundamental properties of molecules (environmental aspects, biomolecules, pharmaceutical drugs, hazardous molecules, etc.) and materials (nanomaterials, nuclear chemistry materials, biomaterials, etc.) are discussed. Given its scope, the book offers a valuable resource for researchers from various branches of science, and presents new techniques that can be applied to their specific problems.
The book contains high quality papers presented in conference Recent Advances in Mechanical Infrastructure (ICRAM-2019) held at IITRAM, Ahmedabad, India from 20-21 April, 2019.The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
This volume provides an overview of the recent advances in the field of paper microfluidics, whose innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic's physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.
This book describes the Asymptotic Modal Analysis (AMA) method to predict the high-frequency vibroacoustic response of structural and acoustical systems. The AMA method is based on taking the asymptotic limit of Classical Modal Analysis (CMA) as the number of modes in the structural system or acoustical system becomes large in a certain frequency bandwidth. While CMA requires both the computation of individual modes and a modal summation, AMA evaluates the averaged modal response only at a center frequency of the bandwidth and does not sum the individual contributions from each mode to obtain a final result. It is similar to Statistical Energy Analysis (SEA) in this respect. However, while SEA is limited to obtaining spatial averages or mean values (as it is a statistical method), AMA is derived systematically from CMA and can provide spatial information as well as estimates of the accuracy of the solution for a particular number of modes. A principal goal is to present the state-of-the-art of AMA and suggest where further developments may be possible. A short review of the CMA method as applied to structural and acoustical systems subjected to random excitation is first presented. Then the development of AMA is presented for an individual structural system and an individual acoustic cavity system, as well as a combined structural-acoustic system. The extension of AMA for treating coupled or multi-component systems is then described, followed by its application to nonlinear systems. Finally, the AMA method is summarized and potential further developments are discussed.
Plant Nanobionics, Volume 2 continues the important discussion of nanotechnology in plants, but focuses with a focus on biosynthesis and toxicity. This book discusses novel approaches to biosynthesis of nanoparticles for the increase of plant production systems, controlled release of agrochemicals and management of plant biotic stress. Green biosynthesis of metallic nanoparticles from bee propolis, artificial photosynthesis and hybrid structures are presented. Although engineered nanoparticles have great potential for solving many agricultural and societal problems, their consequences on the ecosystems and environment must be responsibly considered. This volume aims to contribute to the limited literature on this topic through its comprehensive examination of nanoparticle toxicity on plants, microbes and human health. Environmental risks with recent data are discussed as well as risks associated with the transfer of nanoparticles through the food chain. This volume highlights the study of a mechanistic approach and the study of nanoparticles towards nanobionics. The application of polymeric materials for smart packing in the food industry and agriculture sector as well as the future of nanomaterials in detecting soil microbes for environmental remediation are also included.
This book provides a comprehensive overview of the VLSI design process. It covers end-to-end system on chip (SoC) design, including design methodology, the design environment, tools, choice of design components, handoff procedures, and design infrastructure needs. The book also offers critical guidance on the latest UPF-based low power design flow issues for deep submicron SOC designs, which will prepare readers for the challenges of working at the nanotechnology scale. This practical guide will provide engineers who aspire to be VLSI designers with the techniques and tools of the trade, and will also be a valuable professional reference for those already working in VLSI design and verification with a focus on complex SoC designs. A comprehensive practical guide for VLSI designers; Covers end-to-end VLSI SoC design flow; Includes source code, case studies, and application examples.
Engineering Dynamics Course Companion, Part 1: Particles: Kinematics and Kinetics is a supplemental textbook intended to assist students, especially visual learners, in their approach to Sophomore-level Engineering Dynamics. This text covers particle kinematics and kinetics and emphasizes Newtonian Mechanics "Problem Solving Skills" in an accessible and fun format, organized to coincide with the first half of a semester schedule many instructors choose, and supplied with numerous example problems. While this book addresses Particle Dynamics, a separate book (Part 2) is available that covers Rigid Body Dynamics.
Engineering Dynamics Course Companion, Part 2: Rigid Bodies: Kinematics and Kinetics is a supplemental textbook intended to assist students, especially visual learners, in their approach to Sophomore-level Engineering Dynamics. This text covers particle kinematics and kinetics and emphasizes Newtonian Mechanics ``Problem Solving Skills'' in an accessible and fun format, organized to coincide with the first half of a semester schedule many instructors choose, and supplied with numerous example problems. While this book addresses Rigid Body Dynamics, a separate book (Part 1) is available that covers Particle Dynamics.
This thesis presents the SiGe source and drain (S/D) technology in the context of advanced CMOS, and addresses both device processing and epitaxy modelling. As the CMOS technology roadmap calls for continuously downscaling traditional transistor structures, controlling the parasitic effects of transistors, e.g. short channel effect, parasitic resistances and capacitances is becoming increasingly difficult. The emergence of these problems sparked a technological revolution, where a transition from planar to three-dimensional (3D) transistor design occurred in the 22nm technology node. The selective epitaxial growth (SEG) method has been used to deposit SiGe as stressor material in S/D regions to induce uniaxial strain in the channel region. The thesis investigates issues of process integration in IC production and concentrates on the key parameters of high-quality SiGe selective epitaxial growth, with a special focus on its pattern dependency behavior and on key integration issues in both 2D and 3D transistor structures, the goal being to improve future applications of SiGe SEG in advanced CMOS.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
This book explores the physical phenomena underlying the optical responses of nanoscale systems and uses this knowledge to explain their behavior, which is very different to what is encountered on the macroscopic scale. In the first three chapters, the authors discuss important aspects of wave optics on surfaces and at small scales, such as the optical interference near surfaces, the physical origin of the index of refraction, and how imaging optical fields can be used to enhance resolution in optical diffraction microscopy. The last two chapters treat a concept on the consequence of the finite size of the focal spot in optical spectroscopy and how the index of refraction can be related to scattering of an ensemble of discrete scatterers. The concepts described here are important to understanding the optical properties of nanoparticles or nanostructured surfaces and are not covered in most fundamental optics courses. This book is designed for researchers and graduate students looking for an introduction to optics at small scales.
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
This brief covers case studies on Microbial Induced Corrosion (MIC) and its mitigation. After reviewing the basics of corrosion, it focuses on MIC. MIC is a special type of electrochemical corrosion in which the presence of microbes and bacteria alters the chemistry of liquid media so as to make them more corrosive. These changes are harmful to metallic equipment, processing machinery, marine vessels, etc. in an environment that is host to a wealth of microorganisms. A 2007 US survey estimated corrosion-related damages to cost $276 billion a year, roughly 50% of which are due to MIC. The industries most affected by MIC are power production, oil exploration, transportation and storage, water distribution and more generally all industries involving marine environments. However, means for effectively preventing and controlling MIC are poorly understood. As such, the book's later chapters address various mechanisms/processes that show promise with regard to MIC mitigation. Lastly, the book discusses the strategies currently being explored to mitigate MIC using green technologies.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.
This book features selected papers presented at the 14th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2019, held in Kursk, Russia, on April 17-20, 2019. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2019 conference was held with the XIII International Scientific and Technical Conference "Vibration 2019", and was organized by Saint Petersburg State University of Aerospace Instrumentation (SUAI), Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and the Southwest State University (SWSU) in with cooperation Russian Foundation for Basic Research (project No. 19-08-20021).
This book highlights the various types of nanomaterials currently available and their applications in three major sectors: energy, health, and the environment. It addresses a range of aspects based on the fact that these materials' structure can be tailored at extremely small scales to achieve specific properties, thus greatly expanding the materials science toolkit. Further, the book pursues a holistic approach to nanomaterial applications by taking into consideration the various stakeholders who use them. It explores several applications that could potentially be used to improve the environment and to more efficiently and cost-effectively produce energy, e.g. by reducing pollutant production during the manufacture of materials, producing solar cells that generate electricity at a competitive cost, cleaning up organic chemicals that pollute groundwater, removing volatile organic compounds (VOCs) from the air, and so on. Given its scope, the book offers a valuable asset for a broad readership, including professionals, students, and researchers from materials science/engineering, polymer science, composite technology, nanotechnology, and biotechnology whose work involves nanomaterials and nanocomposites.
This book presents high-quality papers from the Seventh Asia International Symposium on Mechatronics (AISM 2019). It discusses the latest technological trends and advances in electromechanical coupling and environmental adaptability design for electronic equipment, sensing and measurement, mechatronics in manufacturing and automation, micro-mechatronics, energy harvesting & storage, robotics, automation and control systems. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements, and testing. The applications and solutions discussed here provide excellent reference material for future product developments.
This book highlights current trends and research advances in nanotechnology and its applications. It discusses the synthesis and characterization of nanomaterials / nanocomposites for novel applications in environmental monitoring and sustainability, and presents new findings on wastewater treatment technologies using nanofiltration membranes.
This tutorial book offers an in-depth overview of the fundamental principles of micro/nano technologies and devices related to sensing, actuation and diagnosis in fluidics and biosystems. Research in the MEMS/NEMS and lab-on-chip fields has seen rapid growth in both academic and industrial domains, as these biodevices and systems are increasingly replacing traditional large size diagnostic tools. This book is unique in describing not only the devices and technologies but also the basic principles of their operation. The comprehensive description of the fabrication, packaging and principles of micro/nano biosystems presented in this book offers guidance for researchers designing and implementing these biosystems across diverse fields including medical, pharmaceutical and biological sciences. The book provides a detailed overview of the fundamental mechanical, optical, electrical and magnetic principles involved, together with the technologies required for the design, fabrication and characterization of micro/nano fluidic systems and bio-devices. Written by a collaborative team from France and Korea, the book is suitable for academics, researchers, advanced level students and industrial manufacturers.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 4th International Conference on Cable-Driven Parallel Robots (CableCon 2019), held in Krakow, Poland on June 30-July 4, 2019, as part of the 5th IFToMM World Congress. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
This book provides a comprehensive survey of the technology of flash lamp annealing (FLA) for thermal processing of semiconductors. It gives a detailed introduction to the FLA technology and its physical background. Advantages, drawbacks and process issues are addressed in detail and allow the reader to properly plan and perform their own thermal processing. Moreover, this books gives a broad overview of the applications of flash lamp annealing, including a comprehensive literature survey. Several case studies of simulated temperature profiles in real material systems give the reader the necessary insight into the underlying physics and simulations. This book is a valuable reference work for both novice and advanced users.
This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields.
This thesis demonstrates a technology that enables pipetting-free high-throughput screening (HTS) on a miniaturized platform, eliminating the need for thousands of one-by-one pipetting and conventional liquid handling systems. This platform enhances accessibility to HTS and enables HTS to be used in small-to-medium scale laboratories. In addition, it allows large-scale combinatorial screening with a small number of valuable cells, such as patients' primary cancer cells. This technique will have a high impact for widespread use of HTS in the era of personalized medicine. In this thesis, the author firstly describes the need and concept of 'partipetting' for pipetting-free HTS platform. It is realized by the one-step pipetting and self-assembly of encoded drug-laden microparticles (DLPs) on the microwells. Next, the technical implementations required for the platform demonstration are described. It includes preparation of encoded DLPs, plastic chip fabrication, and realization of automated system. Lastly, screening of sequential drug combinations using this platform is demonstrated. This shows the potential of the proposed technology for various applications. |
You may like...
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, …
Hardcover
Handbook of Entrepreneurial Cognition
J. Robert Mitchell, Ronald K Mitchell, …
Paperback
R1,563
Discovery Miles 15 630
Air Pollution and Environmental Analysis
Bernie Goldman
Hardcover
Handbook of Environmental Pollution and…
Raven Brennan
Hardcover
Special Functions - A Unified Theory…
Sergei Yuryevitsh Slavyanov, Wolfgang Lay
Hardcover
R7,197
Discovery Miles 71 970
|