![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
Among various mechanical devices built to produce power for industrial and societal needs, gas turbines offer a number of significant advantages. The sliding components in reciprocating engines cause considerable vibrations. Hydroelectric power from turbines using water is a great resource, but potential sites are limited. Steam power plants require expensive steam generating equipment of large bulk, and installation may stretch over lengthy time periods. In contrast, gas turbines operate smoothly with low vibrations, are compact in size, can be started rapidly from rest and may be installed fairly quickly. Gas turbines offer even greater benefits in the aviation arena. Turbojet and multi-rotor turbofan engines have no competition for powering larger aircrafts at faster speeds. Applications in other fields abound. An outstanding example is the aeroderivative gas turbines on offshore oil platforms, where their lighter weight, smaller footprint and ability to burn many different types of fuel make it a clear choice. This book is written to meet the needs of students in engineering colleges and practicing engineers. The material has been specifically tailored for college undergraduate and graduate level design engineering of rotating machine courses. In keeping with its mostly introductory nature, the primary focus is on thermodynamic cycle design and practical mechanical design features. Where possible, electronic spreadsheet type of calculations is used in example problems to calculate flow characteristics and related cycle design parameters. The book focuses on: Fuel consumption, power output and exhaust gas emissions State-of-the-art in the thermal and fluid flow technologies for design of single and multi-rotor gas turbines Methods to enhance performance through creative component designs Analysis of complex problems ranging from compressor stall to optimizing operation from partial to full load.
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.
This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.
This handbook deals with the vast subject of thermal management of engines and vehicles by applying the state of the art research to diesel and natural gas engines. The contributions from global experts focus on management, generation, and retention of heat in after-treatment and exhaust systems for light-off of NOx, PM, and PN catalysts during cold start and city cycles as well as operation at ultralow temperatures. This book will be of great interest to those in academia and industry involved in the design and development of advanced diesel and CNG engines satisfying the current and future emission standards.
This monograph is based on methanol as a fuel for transportation sector, specifically for compression ignition (CI) engines. The contents present examples of utilization of methanol as a fuel for CI engines in different modes of transportation such as railroad, personal vehicles or heavy duty road transportation. The book also focuses on effect of methanol on combustion and performance characteristics of the engine. The effect of methanol on exhaust emission production, prediction and control is also discussed. It also discusses current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. Part of the chapters are based on review of state-of-the-art while other chapters are dedicated to an original research. This volume will be a useful guide to professionals and academics involved in alternative fuels, compression ignition engines, and environmental research.
This book gathers the latest advances, innovations, and applications in the field of machine science and mechanical engineering, as presented by international researchers and engineers at the 11th International Conference on Machine and Industrial Design in Mechanical Engineering (KOD), held in Novi Sad, Serbia on June 10-12, 2021. It covers topics such as mechanical and graphical engineering, industrial design and shaping, product development and management, complexity, and system design. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
During the last decade, rapid advances have been made in the area of flow analysis in the components of gas turbine engines. Improving the design methods of turbomachine blade rows and under standing of the flow phenomena through them, has become one of the major research topics for aE'rodynamists. This increase of research efforts is due to the need of reducing the weight and fuel consumption of turbojet engines for the same thrust levels. One way of achieving this is to design more efficient components working at high local velocities. Design efforts can lead to desired results only if the details of flow through the blade rows are understood. It is also known that for aircraft propulsion systems development, time and cost can be reduced significantly if the perf ormance can be predicted with conf idence and enough precision. This. generally iK: eds sophisticated two or three dimensional computer codes that can give enough information for design and performance prediction. In the recent years, designers also started to use these sophisticated codes more and more with confidence, in connection with computer aided design and manufacturing techniques. On the other hand, the modelling and solution of flow and the meast"
This book presents select proceedings of the International Conference on Recent Advances in Mechanical Engineering Research and Development (ICRAMERD 21). It covers the latest research trends in various branches of mechanical engineering. The topics covered include materials engineering, industrial system engineering, manufacturing systems engineering, automotive engineering, thermal systems, smart composite materials, manufacturing processes, industrial automation, and energy system. The book will be a valuable reference for beginners, researchers, engineers, and industry professionals working in the various fields of mechanical engineering.
In Engines, the always entertaining and informative Theodore Gray explores the glorious guts and intricate innards of dozens of impressive machines. Through his engaging and unexpected stories and Nick Mann's trademark gorgeous photography, Gray takes us on a journey from ancient Greek steam engines to our most sophisticated twenty-first-century machinery. We take time to appreciate the detailed functionality of the internal combustion engine, the connection between magnetism and electric motors, as well as hydraulics, robotics, and more. Each chapter builds on the previous, illuminating the evolution of engines and revealing the ingenuity brought to bear as humans invented and perfected these marvelous mechanical systems. Along the way, Gray regales us with tales of his own experiences working with and collecting these machines. For fans of how things are made and how they work, Engines is a loving tribute to the mechanical world.
This book is a practical account of pumping, piping and seals
starting with basics and providing detailed but accessible
information on all aspects of the pumping process and what can go
wrong with it. Written by an acknowledged expert with years of
teaching experience in the practical understanding of pumps and
systems.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS diversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
This book presents the findings of research projects from the Transregional Collaborative Research Centre 73. These proceedings are the result of years of research into sheet-bulk metal forming. The book discusses the challenges posed by simulating sheet-bulk metal forming. It takes into account the different phenomena characteristic to both sheet and bulk forming fields, and explores the demands this makes on modelling the processes. It then summarizes the research, and presents from a practitioner's point of view. This means the book is of interest to and helps both academics and industrial engineers within the field of sheet-bulk metal forming.
The book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as: straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed. Includes fully-developed exercises to draw the reader's attention to the problems that are of interest to the designer, as well as to clarify the calculation procedure Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
This volume contains the papers of the 7th International Workshop on Medical and Service Robots (MESROB) which was held in Basel, Switzerland, on June 7-9, 2021. The main topics include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, medical treatments, medical lasers, and surgical planning and navigation. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.
The book covers the classical areas of technical thermodynamics: The first part deals with the basic equations for energy conversion and idealized fluids. The second part deals with real fluids, which can be subject to a phase change, for example. Furthermore, thermodynamic mixtures of fluids are considered, e.g., humid air and gas mixtures. In the last part of the book, combustion processes and chemical reactions are presented and thermodynamically balanced. In each chapter, there are examples and exercises to deepen the theoretical knowledge. Compared to the first edition, the topic of thermodynamic state diagrams has been greatly revised. State diagrams of relevant refrigerants have been added as well as a formulary. The section on chemically reacting systems has been expanded and thoroughly revised. In the basic chapters, tasks and examples have been added to consolidate the understanding of the subject. The book is aimed at students of mechanical engineering and professional engineers.
One of the major difficulties in predicting the capacity of pipe piles in sand has resulted from a lack of understanding of the physical processes that control the behavior of piles during installation and loading. This monograph presents a detailed blue print for developing experimental facilities necessary to identify these processes. These facilities include a unique instrumented double-walled pipe-pile that is used to delineate the frictional stresses acting against the external and internal surfaces of the pile. The pile is fitted with miniature pore-pressure transducers to monitor the generation of pore water pressure during installation and loading. A fast automatic laboratory pile hammer capable of representing the phenomena that occur during pile driving was also developed and used.
Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: * Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumps * Considers pumping machinery performance and operational-type problems * Covers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systems * Covers different methods of flow rate control and relevance to machine efficiency and energy consumption * Covers different methods of flow rate control and relevance to machine efficiency and energy consumption
This volume gathers the latest advances, innovations, and applications in the field of robotics engineering, as presented by leading international researchers and engineers at the Latin American Symposium on Industrial and Robotic Systems (LASIRS), held in Tampico, Mexico on October-November 30-01 2019. The contributions cover all major areas of R&D and innovation in simulation, optimization, and control of robotics, such as design and optimization of robots using numerical and metaheuristic methods, autonomous and control systems, industrial compliance solutions, numerical simulations for manipulators and robots, metaheuristics applied to robotics problems, Industry 4.0, control and automation in petrochemical processes, simulation and control in aerospace and aeronautics, and education in robotics. The conference represented a unique platform to share the latest research and developments in simulation, control and optimization of robotic systems, and to promote cooperation among specialists in machine and mechanism area.
This book discusses the impact of fuels characteristics and their effects on the combustion processes in internal combustion engines. It includes the analysis of a variety of biofuels (alcohol fuels and biodiesel) and biogases (natural gas, hydrogen, etc.), providing valuable information related to consequent effects on performance and emissions. The contents focus on recent results and current trends of fuel utilization in the transport sector. State-of-the-art of clean fuels application are also discussed. Thighs book will be of interest to those in academia and industry involved in fuels, IC engines, engine instrumentation, and environmental research.
This monograph presents state-of-the-art knowledge in wood manufacturing design with a special focus on the elaboration of functional relationships. The authors transfer and apply the method of functional relationships to challenges in wood manufacturing, and the book contains many worked examples which help the reader to better understand the presented method. The topical spectrum includes machining processes, energy consumption, surface quality, hardness and durability properties as well as aesthetical properties. The target audience primarily comprises research experts and practitioners in wood manufacturing, but the book may also be beneficial for graduate students alike.
This book presents select papers presented during the 6th National Symposium on Rotor Dynamics, held at CSIR-NAL, Bangalore, and focuses on the latest trends in rotor dynamics and various challenges encountered in the design of rotating machinery. The book is of interest to researchers from mechanical, aerospace, tribology and power industries, engineering service providers and academics.
This book aims to develop systematic design methodologies to model-based nonlinear control of aeroengines, focusing on (1) modelling of aeroengine systems-both component-level and identification-based models will be extensively studied and compared; and (2) advanced nonlinear control designs-set-point control, transient control and limit-protection control approaches will all be investigated. The model-based design has been one of the pivotal technologies to advanced control and health management of propulsion systems. It can fulfil advanced designs such as fault-tolerant control, engine modes control and direct thrust control. As a consequence, model-based design has become an important research area in the field of aeroengines due to its theoretical interests and engineering significance. One of the central issues in model-based controls is the tackling of nonlinearities. There are publications concerning with either nonlinear modelling or nonlinear controls; yet, they are scattered throughout the literature. It is time to provide a comprehensive summary of model-based nonlinear controls. Consequently, a series of important results are obtained and a systematic design methodology is developed which provides consistently enhanced performance over a large flight/operational envelope, and it is thus expected to provide useful guidance to practical engineering in aeroengine industry and research.
This book gathers the latest advances, innovations, and applications in the field of multibody and mechatronic systems. Topics addressed include the analysis and synthesis of mechanisms; modelling and simulation of multibody systems; railway and vehicle dynamics; mechatronic systems for energy harvesting; robot design and optimization; and mechatronic design. It gathers the second volume of the proceedings of the 7th International Symposium on Multibody Systems and Mechatronics (MuSMe), virtually held in Cordoba, Argentina, on October 12-15, 2021, within the framework of the FEIbIM Commission for Robotics and Mechanisms and IFToMM Technical Committees for Multibody Dynamics and for Robotics and Mechatronics.
This book analyzes the problems to be solved urgently in the development of launch vehicle control system. The techniques of redundant Inertial Measurement Unit (IMU) reconfiguration and trajectory replanning are proposed aiming at the inertial device failures and power system failures during flight of launch vehicles, respectively. It introduces the background of redundant IMU reconfiguration and trajectory replanning technologies and models of launch vehicle dynamics and redundant strap-down IMUs. The approaches for redundant strap-down IMU fault detection, reconfiguration and trajectory replanning are proposed, putting forward a prospect for the development of launch vehicle control system. The content of this book is concise and highly pragmatic. It could serve as a reference for engineers and researchers engaged in the analysis, design and verification of launch vehicle control systems and also as a reference for graduate students and senior undergraduates majoring in navigation, guidance and control. |
![]() ![]() You may like...
Advanced Gear Engineering
Veniamin Goldfarb, Evgenii Trubachev, …
Hardcover
R7,782
Discovery Miles 77 820
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,951
Discovery Miles 59 510
The Magnet Motor - Making Free Energy…
Patrick Weinand
Hardcover
Metal Magnetic Memory Technique and Its…
Haihong Huang, Zhengchun Qian, …
Hardcover
R4,851
Discovery Miles 48 510
Proceedings of IncoME-V & CEPE Net-2020…
Dong Zhen, Dong Wang, …
Hardcover
R8,947
Discovery Miles 89 470
SLAM Techniques Application for Mobile…
Andrii Kudriashov, Tomasz Buratowski, …
Hardcover
R4,316
Discovery Miles 43 160
Essay on Machines in General (1786…
Raffaele Pisano, Jennifer Coopersmith, …
Hardcover
R3,987
Discovery Miles 39 870
Theory of Oscillations - Structural…
Sergey Viktorovich Eliseev, Andrey Vladimirovich Eliseev
Hardcover
R4,681
Discovery Miles 46 810
|