![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes. While maintaining the unifying character of the book structure in this second revised and extended edition all chapters have undergone a rigorous update and enhancement. Accounting for the need of the turbomachinery community, three chapters have been added, that deal with computationally relevant aspects of turbomachinery design such as boundary layer transition, turbulence and boundary layer.
This book describes the fundamental phenomena of, and computational methods for, hydraulic transients, such as the self-stabilization effect, restriction of the Joukowsky equation, real relations between the rigid and elastic water column theories, the role of wave propagation speed, mechanism of the attenuation of pressure fluctuations, etc. A new wave tracking method is described in great detail and, supported by the established conservation and traveling laws of shockwaves, offers a number of advantages. The book puts forward a novel method that allows transient flows to be directly computed at each time node during a transient process, and explains the differences and relations between the rigid and elastic water column theories. To facilitate their use in hydropower applications, the characteristics of pumps and turbines are provided in suitable forms and examples. The book offers a valuable reference guide for engineers and scientists, helping them make transient computations for their own programming, while also contributing to the final standardization of methods for transient computations.
This book presents a comprehensive study of all important aspects of tribology. It covers issues and their remedies adopted by researchers working on automobile systems. The book is broadly divided in to three sections, viz. (i) new materials for automotive applications, (ii) new lubricants for automotive applications, and (iii) impact of surface morphologies for automotive applications. The rationale for this division is to provide a comprehensive and categorical review of the developments in automotive tribology. The book covers tribological aspects of engines, and also discusses influence of new materials, such as natural fibers, metal foam materials, natural fiber reinforced polymer composites, carbon fiber/silicon nitride polymer composites and aluminium matrix composites. The book also looks at grease lubrication, effectiveness and sustainability of solid/liquid additives in lubrication, and usage of biolubricants. In the last section the book focuses on brake pad materials, shot peening method, surface texturing, magnetic rheological fluid for smart automobile brake and clutch systems, and application of tribology in automobile systems. This book will be of interest to students, researchers, and professionals from the automotive industry.
This book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed. This is the most advanced reference guide to the state of the art in gear engineering. Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined. The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on Electric Vehicle Systems Architecture and Standardization Needs. The objectives of energy efficiency and zero emissions in road transportation imply a paradigm shift in the concept of the automobile regarding design, materials, and propulsion technology. A redesign of the electric and electronic architecture provides in many aspects additional potential for reaching these goals. At the same time, standardization within a broad range of features, components and systems is a key enabling factor for a successful market entry of the electric vehicle (EV). It would lower production cost, increase interoperability and compatibilities, and sustain market penetration. Hence, novel architectures and testing concepts and standardization approaches for the EV have been the topic of an expert workshop of the European Green Vehicles Initiative PPP. This book contains the contributions of current European research projects on EV architecture and an expert view on the status of EV standardization. The target audience primarily comprises researchers and experts in the field.
This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author's screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the author in 2002, is introduced in detail. Besides, the three-order screw system and its space distribution of the kinematic screws for infinite possible motions of lower mobility mechanisms are both analyzed.
This unique reference represents a cross-section of forefront robotics research, ranging from robotics and systems to learning, autonomy and failure detection, from vision and navigation to localization and mapping, which are based on the papers presented at the 1st European Robotics Symposium (EUROS-06) held in Palermo, Italy from 16-18 March, 2006. The European Robotics Symposium (EUROS) is a brand-new International scientific event promoted by EURON, the European Robotics Network.
"Surface Integrity in Machining" describes the fundamentals and recent advances in the study of surface integrity in machining processes. "Surface Integrity in Machining" gathers together research from international experts in the field. Topics covered include: the definition of surface integrity and its importance in functional performance; surface topography characterization and evaluation; microstructure modification and the mechanical properties of subsurface layers; residual stresses; surface integrity characterization methods; and surface integrity aspects in machining processes. A useful reference for researchers in tribology and materials, mechanical and materials engineers, and machining professionals, "Surface Integrity in Machining" can be also used as a textbook by advanced undergraduate and postgraduate students.
This monograph focuses on methanol and its utilization in transportation sector, namely in spark ignition (SI) engines. The contents focus on methanol production and presents a variety of production technologies from different feedstocks. The potential of methanol utilization in transportation in SI engines is discussed, its challenges, limitations, aspects related to its utilization and current global use of methanol are also presented. The book also contains chapters related to pollutant formation and exhaust emissions from methanol fuelled SI engines, one chapter is focused specifically on formaldehyde emissions, which possesses one of the greatest challenges of methanol use in IC engines. Readers will learn about the production aspects of methanol, its potential as a sustainable fuel, its utilization in SI engine and the effect of methanol and its utilization techniques on engine performance, combustion, exhaust emissions, efficiency and other important parameters. This volume will be a useful guide for professionals, post-graduate students involved in alternative fuels, spark ignition engines, and environmental research.
This book covers diesel engine theory, technology, operation and maintenance for candidates for the Department of Transport's Certificates of Competency in Marine Engineering, Class One and Class Two. The book has been updated throughout to include new engine types and operating systems that are currently in active development or recently introduced.
This volume gathers the latest fundamental research contributions, innovations, and applications in the field of design and analysis of complex robotic mechanical systems, machines, and mechanisms, as presented by leading international researchers at the 1st USCToMM Symposium on Mechanical Systems and Robotics (USCToMM MSR 2020), held in Rapid City, South Dakota, USA on May 14-16, 2020. It covers highly diverse topics, including soft, wearable and origami robotic systems; applications to walking, flying, climbing, underground, swimming and space systems; human rehabilitation and performance augmentation; design and analysis of mechanisms and machines; human-robot collaborative systems; service robotics; mechanical systems and robotics education; and the commercialization of mechanical systems and robotics. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting and impactful research results that will inspire novel research directions and foster multidisciplinary research collaborations among researchers from around the globe.
Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discusses how "cross-pollinating" perspectives and theories from the social and engineering sciences can enhance our understanding of barriers, energy audits, energy management, policies, and programmes as they pertain to improved energy efficiency in industry. Apart from classical technical approaches from engineering sciences, Improving energy efficiency in industrial energy systems couples a sociotechnical perspective to increased energy efficiency in industry, showing that industrial energy efficiency can be expected to be shaped by social and commercial processes and built on knowledge, routines, institutions, and methods established in networks. The book can be read by researchers and policy-makers, as well as scholars and practicians in the field. "This book is extremely valuable for anyone who is designing or executing energy efficiency policies, schemes or projects aiming at SMEs. Both authors deserve the highest respect, and the combination of their expertise makes the results truly unique." - Daniel Lundqvist, programme manager at the Swedish energy agency "For anyone interested in improving energy efficiency in industry, this is a must-read. The book combines tools from social science and engineering to discuss the state of art today as well as possible development path tomorrow. This is a compelling book that I find useful both in my teaching and my research." - Kajsa Ellegard, Professor at Linkoeping University, Sweden "The book Improving energy efficiency in industrial energy systems is a novel approach on how improved levels of energy efficiency can be reached in industrial energy systems by merging engineering with social sciences. It is with delight that I can recommend their book to anyone interested in the field."- Mats Soederstroem, Director Energy Systems Programme, Linkoeping University, Sweden
This textbook is intended for post-graduate students in mechanical and allied engineering disciplines. It will also be helpful to scientists and engineers working in the areas of combustion to recapitulate the fundamental and generally applied aspects of combustion. This textbook comprehensively covers the fundamental aspects of combustion. It includes physical descriptions of premixed and non-premixed flames. It provides a detailed analysis of the basic ideas and design characteristics of burners for gaseous, liquid and solid fuels. A chapter on alternative renewable fuels has also been included to bring out the need, characteristics and usage of alternative fuels. Review questions have been provided at the end of each chapter which will help the students to evaluate their understanding of the important concepts covered in that chapter. Several standard text books have been cited in the chapters and are listed towards the end, as suggested reading, to enable the readers to refer them when required. The textbook will be useful for students in mechanical, aerospace and related fields of engineering. It will also be a good resource for professionals and researchers working in the areas of combustion technology.
This book covers the materials needed to make ceramic burners and explains how to silver solder them. It discusses LPG and holding tanks, as well as connecting pipework and electronic and mechanical automatic gas-control systems to monitor the boiler pressure. In addition, there is advice on how to set up, install and operate each burner to provide optimum heating to the boiler. A summary of the Boiler Test Code Volume 3 that applies to home-made gas tanks is included, together with a list of useful suppliers with their contact details. This book provides all the information you need to build and operate: three burners, with one variant, for boilers with 42mm, 35mm and 28mm horizontal flues; two round burners for vertical boilers with fire boxes; two different sizes of rectangular burner, with one variant, for use in horizontal water-tube or pot boilers and finally, one small round and one tiny oblong burner for use in Mamod and Wilesco boilers. The burners described are straightforward to make and simple to use to heat the water in boilers that meet the 3 bar litre limit in the UK Boiler Test Code.
STRUCTURAL DYNAMICS OF TURBO-MACHINES presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: * Blade and coupled disk-blade modes of vibration * Dynamic instability, non-linear phenomena, their causes and consequences * Methods to control rotor-to-stator clearance and improving operating efficiency * Experimental techniques and analytical correlation with variables ranging from blade flutter to bearing orbital trajectory * Fatigue failures arising from thermal ratcheting and cyclical operating loads * Material characteristics and requirements Growth in machine operating parameters and user expectations require exacting consideration of dynamic characteristics. State-of-the-art technology is required to understand blade dynamics and rotating system vibrations. Vibration measurement is an important tool in diagnostics. This book develops methods to understand vibrations and correct major causes of related problems. Emphasis is placed on practical modeling methods, interpreting results and obtaining realistic solutions. Analysis as a problem solving tool is the focus.
Combustion Engineering & Gas Utilisation is a practical guide to sound engineering practice for engineers from industry and commerce responsible for the selection, installation, designing and maintenance of efficient and safe gas fired heating equipment.
Gas turbines play an important role in power generation and aeroengines. An extended survey of methods associated with the control and systems identification in these engines, Dynamic Modelling of Gas Turbines reviews current methods and presents a number of new perspectives.- Describes a total modelling and identification program for various classes of aeroengine, allowing you to deal with the engine's behaviour over its complete life cycle- Shows how the above regime can be applied to a real engine balancing the theory with practical use- Follows a comparative approach to the study of existing and newly derived techniques thus offering an informed choice of controllers and models from the tied-and trusted to the most up-to-date evolutionary optimisation models- Presents entirely novel work in modelling, optimal control and systems identification to help you get the most from your engine designsDynamic Modelling of Gas Turbines represents the latest research of three groups of internationally recognised experts in gas turbine studies. It will be of interest to academics working in aeroengine control and to industrial practitioners in companies concerned with their design. The work
This book is an introduction to automotive engineering, to give freshmen ideas about this technology. The text is subdivided in parts that cover all facets of the automobile, including legal and economic aspects related to industry and products, product configuration and fabrication processes, historic evolution and future developments. The first part describes how motor vehicles were invented and evolved into the present product in more than 100 years of development. The purpose is not only to supply an historical perspective, but also to introduce and discuss the many solutions that were applied (and could be applied again) to solve the same basic problems of vehicle engineering. This part also briefly describes the evolution of automotive technologies and market, including production and development processes. The second part deals with the description and function analysis of all car subsystems, such as: . vehicle body, . chassis, including wheels, suspensions, brakes and steering mechanisms, . diesel and gasoline engines, . electric motors, batteries, fuel cells, hybrid propulsion systems, . driveline, including manual and automatic gearboxes. This part addresses also many non-technical issues that influence vehicle design and production, such as social and economic impact of vehicles, market, regulations, particularly on pollution and safety. In spite of the difficulty in forecasting the paths that will be taken by automotive technology, the third part tries to open a window on the future. It is not meant to make predictions that are likely to be wrong, but to discuss the trends of automotive research and innovation and to see the possible paths that may be taken to solve the many problems that are at present open or we can expect for the future. The book is completed by two appendices about the contribution of computers in designing cars, particularly the car body and outlining fundamentals of vehicle mechanics, including aerodynamics, longitudinal (acceleration and braking) and transversal (path control) motion.
In Engines, the always entertaining and informative Theodore Gray explores the glorious guts and intricate innards of dozens of impressive machines. Through his engaging and unexpected stories and Nick Mann's trademark gorgeous photography, Gray takes us on a journey from ancient Greek steam engines to our most sophisticated twenty-first-century machinery. We take time to appreciate the detailed functionality of the internal combustion engine, the connection between magnetism and electric motors, as well as hydraulics, robotics, and more. Each chapter builds on the previous, illuminating the evolution of engines and revealing the ingenuity brought to bear as humans invented and perfected these marvelous mechanical systems. Along the way, Gray regales us with tales of his own experiences working with and collecting these machines. For fans of how things are made and how they work, Engines is a loving tribute to the mechanical world.
This book provides readers with the fundamental, analytical, and quantitative knowledge of machining process planning and optimization based on advanced and practical understanding of machinery, mechanics, accuracy, dynamics, monitoring techniques, and control strategies that they need to understanding machining and machine tools. It is written for first-year graduate students in mechanical engineering, and is also appropriate for use as a reference book by practicing engineers. It covers topics such as single and multiple point cutting processes; grinding processes; machine tool components, accuracy, and metrology; shear stress in cutting, cutting temperature and thermal analysis, and machine tool chatter. The second section of the book is devoted to "Non-Traditional Machining," where readers can find chapters on electrical discharge machining, electrochemical machining, laser and electron beam machining, and biomedical machining. Examples of realistic problems that engineers are likely to face in the field are included, along with solutions and explanations that foster a didactic learning experience.
This book focuses on the simulation and modeling of internal combustion engines. The contents include various aspects of diesel and gasoline engine modeling and simulation such as spray, combustion, ignition, in-cylinder phenomena, emissions, exhaust heat recovery. It also explored engine models and analysis of cylinder bore piston stresses and temperature effects. This book includes recent literature and focuses on current modeling and simulation trends for internal combustion engines. Readers will gain knowledge about engine process simulation and modeling, helpful for the development of efficient and emission-free engines. A few chapters highlight the review of state-of-the-art models for spray, combustion, and emissions, focusing on the theory, models, and their applications from an engine point of view. This volume would be of interest to professionals, post-graduate students involved in alternative fuels, IC engines, engine modeling and simulation, and environmental research.
Equipping practicing engineers and students with the tools to independently assess and understand complex material on the topic, this text is an ideal precursor to advanced heat transfer courses. Intermediate Heat Transfer discusses numerical analysis in conduction and convection, temperature-dependent thermal conductivity, conduction through a slab from one fluid to another fluid, steady-state heat conduction in a two-dimensional fin, and truncation and round-off errors in finite difference method. Replete with sample problems to clarify concepts, this is an indispensable resource for professionals and seniors and first-year graduate students pursuing tracks in mechanical, aerospace, nuclear, and chemical engineering.
This book offers an overview of current methods for the intelligent monitoring of rotating machines. It describes the foundations of smart monitoring, guiding readers to develop appropriate machine learning and statistical models for answering important challenges, such as the management and analysis of a large volume of data. It also discusses real-world case studies, highlighting some practical issues and proposing solutions to them. The book offers extensive information on research trends, and innovative strategies to solve emerging, practical issues. It addresses both academics and professionals dealing with condition monitoring, and mechanical and production engineering issues, in the era of industry 4.0.
Diesel engines are installed in just about every yacht and in most large motorboats and, while professional help is often at hand, sometimes it is not. Indeed, engine failure is one of the most frequent causes of RNLI launches. This book explains how to prevent problems, troubleshoot and make repairs using safe techniques. It could also help you save money on expensive bills for yard work you could do yourself. Diesels Afloat covers everything from how the diesel engine works to engine electrics, from fault finding to out of season layup. With this guide and your engine's manual you can get the best performance from your boat's engine and be confident in dealing with any problem. The book covers the syllabus of the RYA Diesel Engine and MCA Approved Engine (AEC-1) courses. This edition has been thoroughly modernised and updated by former course lecturer and currently chief engineer on merchant ships, Callum Smedley.
This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research. |
You may like...
Strategic Capabilities and Knowledge…
Arturo Capassp, Giovanni B. Dagnino, …
Hardcover
R4,478
Discovery Miles 44 780
Banking Risk Management in a Globalizing…
Panos Angelopoulos, Panos Mourdoukoutas
Hardcover
R2,547
Discovery Miles 25 470
Perspectives on Uncertainty and Risk…
Marjolein B.A.Van Asselt
Hardcover
R4,251
Discovery Miles 42 510
A Comprehensive Assessment of the Role…
Richard E. Just, Rulon D. Pope
Hardcover
R5,467
Discovery Miles 54 670
Cross-Cultural Risk Perception - A…
Ortwin Renn, Bernd Rohrmann
Hardcover
R4,139
Discovery Miles 41 390
|