![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
"Design Rules for Actuators in Active Mechanical Systems" deals with the formulation of model-based design rules to be used in the conception of optimized mechatronic and adaptronic systems. The book addresses the comparison of different actuator classes for given applications and offers answers to the following questions: What is the relationship between actuator geometry and primary output quantities? How scalable are actuators based on the same principle? How are energetic output quantities (work and power) related to mechanical load and geometry? How should actuators be designed and sized to obtain the best performance for the chosen actuator kind, and for a given application? "Design Rules for Actuators in Active Mechanical Systems" will be of use to industry professionals, such as actuator and machine designers, as well as to researchers and students of mechanical engineering, mechatronics, and electrical engineering.
Journal bearings, which are used in all kinds of rotating machinery, do not only support static loads, such as the weight of rotors and load caused by transmitted torque of reduction gears, but are, in addition almost the only machine element that is able to suppress various exciting forces acting on the rotating shaft. As rotating machines have become large and multi-staged, while compactness, high speed, and high output have also been realized in recent years, not only has the bearing load increased, but also the magnitude and variety of exciting forces. Therefore, the role and importance of journal bearings have increased tremendous ly. In particular, for the design of rotating machines with low vibration levels and high reliability, knowledge of the exact characteristic data of bearings, and especial ly of the stiffness or spring coefficients and the damping coefficients of oil films in bearings, is essential. However, the amount of reliable data now applicable to practical design is limited. Through the activity of the Research Subcommittee on Dynamic Charac teristics of Journal Bearings and Their Applications (designated as PSC 28), estab lished and organized in June 1979 through May 1982 within the Japan Society of Mechanical Engineers (JSME), these coefficients, together with static characteris tics, have been calculated and also measured on a number of new test rigs.
This book deals with the functioning of hydrodynamic journal bearings in turbomachinery. It makes particular reference to large turbine generator and marine propulsion plant. Journal-bearing design in this field has been based mainly on experience supplemented by full-scale experimental test. Development is becoming influenced to an increasing extent by research and analysis. Particular attention is given in this book to correlation of research and analytical work with the observed operating characteristics of journal bearings. The physical phenomena in bearings are complicated, and analysis is rendered convenient only by making simplifying assumptions. The engineer must know which assumptions are serviceable and in what operating conditions they may be applied. Current British and European practice in journal bearings is illus trated. An examination is made of steady running characteristics, as predicted by theory and as established by test. Some account is given of the dynamic characteristics of journal bearings and of their in fluence in machine vibration. Service experience of journal bearings is reviewed, and reference is made to possible future trends in develop ment. The book is the outcome of work on turbine plant with Metropolitan Vickers and its successor Associated Electrical Industries. The A.E. . and English Electric activities in this field have recently been incor porated in English Electric-A.E. . Turbine-Generators Ltd. The author expresses his gratitude to the Company for permission to publish the results. He thanks the English Electric Co. Ltd., C. A."
Rotor dynamics is an important branch of dynamics that deals with behavior of rotating machines ranging from very large systems like power plant rotors, for example, a turbogenerator, to very small systems like a tiny dentist's drill, with a variety of rotors such as pumps, compressors, steam/gas turbines, motors, turbopumps etc. as used for example in process industry, falling in between. The speeds of these rotors vary in a large range, from a few hundred RPM to more than a hundred thousand RPM. Complex systems of rotating shafts depending upon their specific requirements, are supported on different types of bearings. There are rolling element bearings, various kinds of fluid film bearings, foil and gas bearings, magnetic bearings, to name but a few. The present day rotors are much lighter, handle a large amount of energy and fluid mass, operate at much higher speeds, and therefore are most susceptible to vibration and instability problems. This have given rise to several interesting physical phenomena, some of which are fairly well understood today, while some are still the subject of continued investigation. Research in rotor dynamics started more than one hundred years ago. The progress of the research in the early years was slow. However, with the availability of larger computing power and versatile measurement technologies, research in all aspects of rotor dynamics has accelerated over the past decades. The demand from industry for light weight, high performance and reliable rotor-bearing systems is the driving force for research, and new developments in the field of rotor dynamics. The symposium proceedings contain papers on various important aspects of rotor dynamics such as, modeling, analytical, computational and experimental methods, developments in bearings, dampers, seals including magnetic bearings, rub, impact and foundation effects, turbomachine blades, active and passive vibration control strategies including control of instabilities, nonlinear and parametric effects, fault diagnostics and condition monitoring, and cracked rotors. This volume is of immense value to teachers, researchers in educational institutes, scientists, researchers in R&D laboratories and practising engineers in industry. "
This book contains the proceedings of HMM2012, the 4th International Symposium on Historical Developments in the field of Mechanism and Machine Science (MMS). These proceedings cover recent research concerning all aspects of the development of MMS from antiquity until the present and its historiography: machines, mechanisms, kinematics, dynamics, concepts and theories, design methods, collections of methods, collections of models, institutions and biographies.
The flow of two-phase mixtures through restrictions. is a complex phenomenon that to date has not been fully described analytically. It is an area that received a geat deal of attention because of its application to nuclear reactor technology. The majority of the work done in this area considered ideal geometries such as nozzles, orifices and straight pipes. In the area of control valves very little work has been done. Brockett & King [1] studied subcooled water. Stiles [2] looked at subcooled freon. Martinec [4] compared subcooled freon in valves with ideal geometries. Sheldon & Schuder [3) looked experimentally at airjwater mixtures through valves that resulted in a sizing procedure. Fagerlund [10] presented an analytical model that required use of the Sheldon & Schuder data to establish the behavior of valves as opposed to more ideal geometries. However, the data used was limited to a single valve travel. Fagerlund & Storer [11] have expanded this to include several valve travels that further generalizes the technique. It is the intent of this paper to summarize a practical approach to s1z1ng valves for two-phase service that may be reduced to either a graphical or calculator procedure. Discussion of Analysis A fundamental assumption in this method is that the quality remains constant between the inlet and the vena contracta. For gas-liquid flows it is obvious providing vaporization does not occur.
Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as: fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines."
This volume contains papers presented at the 11th International Conference on Jet Cutting Technology, held at St. Andrews, Scotland, on 8-10 September 1992. Jetting techniques have been successfully applied for many years in the field of cleaning and descaling. Today, however, jet cutting is used in operations as diverse as removing cancerous growths from the human body, decommissioning sunsea installations and disabling explosive munitions. The diversity is reflected in the papers presented at the conference. The papers were divided into several main sections: jetting basics -- materials; jetting basics -- fluid mechanics; mining and quarrying; civil engineering; new developments; petrochem; cleaning and surface treatment; and manufacturing. The high quality of papers presented at the conference has further reinforced its position as the premier event in the field. The volume will be of interest to researchers, developers and manufacturers of systems, equipment users and contractors.
In the last decade the research in signal analysis was dominated by models that encompass nonstationarity as an important feature. This book presents the results of a workshop held in Grodek Polandin February 2013 which was dedicated to the investigation of cyclostationary signals. Its main objective is to highlight the strong interactions between theory and applications of cyclostationary signals with the use of modern statistical tools. An important application of cyclostationary signals is the analysis of mechanical signals generated by a vibrating mechanism. Cyclostationary models are very important to perform basic operations on signals in both time and frequency domains. One of the fundamental problems in diagnosis of rotating machine is the identification of significant modulating frequencies that contribute to the cyclostationary nature of the signals. The book shows that there are modern tools available for analyzing cyclostationary signals without the assumption of gaussianity. Those methods are based on the ideas of bootstrap, subsampling and Fraction-of-time (FOT) models. The book is organised in two parts. The first part will be dedicated to pure theory on cyclostationarity. Applications are presented in the second part including several mechanical systems such as bearings, gears, with or without damages."
The book is a valuable research tool-kit for innovators, amateur & professionals alike. Additionally, College & University faculties on Engineering, who organize yearly workshops internationally will find hundreds of novel themes to choose from. Some teachers might just secretly buy this book to introduce out-of-box brain-teasers in classroom to add fizz to normal (at times boring) lecturing. The book can be used as main/add-on textbook towards following courses: (1) Master's degree programs on design innovation worldwide and (2) Senior undergraduate courses in industrial, engineering & product design.
"High Performance Grinding and Advanced Cutting Tools" discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.
Two-fluid dynamics is a challenging subject rich in physics and prac tical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actu ally work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This proce dure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.
This 1992 book provides a coherent and comprehensive treatment of the thermodynamics and gas dynamics of the practical Stirling cycle. Invented in 1816, the Stirling engine is the subject of worldwide research and development on account of unique qualities - silence, indifference to heat source, low level of emissions when burning conventional fuels and an ability to function in reverse as heat pump or refrigerator. The student of engineering will discover an instructure and illuminating case study revealing the interactions of basic disciplines. The researcher will find the groundwork prepared for various types of computer simulation, Those involved in the use and teaching of solution methods for unsteady gas dynamics problems will find a comprehensive treatment on nonlinear and linear wave approaches, for the Stirling machine provides an elegant example of the application of each. The book will be of use to all those involved in researching, designing or manufacturing Stirling prime movers, coolers and related regenerative thermal machines.
The aim of this book is to present pedestrian injuries from a biomechanical perspective. We aim to give a detailed treatment of the physics of pedestrian impact, as well as a review of the accident databases and the relevant injury criteria used to assess pedestrian injuries. A further focus will be the effects on injury outcome of (1) pedestrian/vehicle position and velocity at impact and (2) the influence of vehicle design on injury outcome. Most of the content of this book has been published by these and other authors in various journals, but this book will provide a comprehensive treatment of the biomechanics of pedestrian impacts for the first time. It will therefore be of value to new and established researchers alike.
In constant effort to eliminate mine danger, international mine action community has been developing safety, efficiency and cost-effectiveness of clearance methods. Demining machines have become necessary when conducting humanitarian demining where the mechanization of demining provides greater safety and productivity. "Design of Demining Machines" describes the development and testing of modern demining machines in humanitarian demining. Relevant data for design of demining machines are included to explain the machinery implemented and some innovative and inspiring development solutions. Development technologies, companies and projects are discussed to provide a comprehensive estimate of the effects of various design factors and to proper selection of optimal parameters for designing the demining machines. Covering the dynamic processes occurring in machine assemblies and their components to a broader understanding of demining machine as a whole, "Design of Demining Machines" is primarily tailored as a text for the study of the fundamentals and engineering techniques involved in the calculation and design of demining machines. It will prove as useful resource for engineers, designers, researchers and policy makers working in this field.
In dem Band werden Anwendungen f r feststoffgeschmierte W lzkontakte, etwa im Maschinenbau, in der Luft- und Raumfahrt, der Lebensmittelindustrie oder der Medizintechnik, vorgestellt. Ihre Potenziale und Grenzen werden analysiert und im Theorieteil systematisch hergeleitet. Ferner werden Pr fverfahren und Pr feinrichtungen vorgestellt und Pr fergebnisse ausf hrlich erl utert. Ein Schwerpunkt ist die detaillierte Beschreibung der Gestaltungsfaktoren, die Lebensdauer und Lagerperformance von feststoffgeschmierten W lzlagern beeinflussen.
Geometry of Single-Point Turning Tools and Drills outlines clear objectives of cutting tool geometry selection and optimization, using multiple examples to provide a thorough explanation. It addresses several urgent problems that many present-day tool manufacturers, tool application specialists, and tool users, are facing. It is both a practical guide, offering useful, practical suggestions for the solution of common problems, and a useful reference on the most important aspects of cutting tool design, application, and troubleshooting practices. Covering emerging trends in cutting tool design, cutting tool geometry, machining regimes, and optimization of machining operations, Geometry of Single-Point Turning Tools and Drills is an indispensable source of information for tool designers, manufacturing engineers, research workers, and students.
Parallel Kinematic Machines (PKMs) are one of the most radical innovations in production equipment. They attempt to combine the dexterity of robots with the accuracy of machine tools to respond to several industrial needs. This book contains the proceedings of the first European-American Forum on Parallel Kinematic Machines, held in Milan, Italy from 31 August - 1 September 1998. The Forum was established to provide institutions, technology suppliers and industrial end users with an improved understanding of the real advantages to be gained from using PKMs. This book contributes to a mid-term strategy oriented to reduce time to market and costs, improve production flexibility and minimize environmental impacts to increase worldwide competitiveness. In particular the authors focus on enabling technologies and emerging concepts for future manufacturing applications of PKMs. Topics include: Current status of PKM R&D in Europe, the USA and Asia. Industrial requirements, roadblocks and application opportunities. Research issues and possibilities. Industrial applications and requirements.
Presented here are 73 refereed papers given at the 34th MATADOR Conference held at UMIST in July 2004. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The 34th proceedings contains original papers contributed by researchers from many countries on different continents. The papers cover both the technological aspect of manufacturing processes; and the systems, business and management features of manufacturing enterprise. The papers in this volume reflect: - the importance of manufacturing to international wealth creation; - the necessity of responsiveness and agility of manufacturing companies to meet market-led requirements and international change; - the role of information technology and electronic communications in the growth of global manufacturing enterprises; - the impact of new technologies, new materials and processes, on the ability to produce goods of higher quality, more quickly, to meet markets needs at a lower cost. Some of the major generic developments which have taken place in these areas since the 33rd MATADOR conference was held in 2000 are reported in this volume.
Fatigue and wear are the most damaging phenomena affecting machines since they result in some 90% of breakdowns. This tutorial book systematically develops a unified overview, named tribo-fatigue, which aims to address the complex wear-fatigue damages. Tribo-fatigue synthesizes aspects of three disciplines: mechanical fatigue, tribology, and reliability of mechanical systems. Tribo-fatigue opens new perspectives for increasing the durability of machines according to the most important criteria of their serviceability. Detailed damage measurement and wear-fatigue tests that enable engineers to design more durable and reliable systems are developed. The book is intended for advanced students, researchers and engineers.
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.
The International Union of Theoretical and Applied Mechanics (IUTAM) initiated and sponsored an International Symposium on Nonlinear Dynamics in Engineering Systems held in 1989 in Stuttgart, FRG. The Symposium was intended to bring together scientists working in different fields of dynamics to exchange ideas and to discuss new trends with special emphasis on nonlinear dynamics in engineering systems. A Scientific Committee was appointed by the Bureau of IUTAM with the following members: S. Arimoto (Japan), F.L. Chernousko (USSR), P.J. Holmes (USA), C.S. Hsu (USA), G. looss (France), F.C. Moon (USA), W. Schiehlen (FRG), Chairman, G. Schmidt (GDR), W. Szemplinska-Stupnicka (Poland), J.M.T. Thompson (UK), H. Troger (Austria). This committee selected the participants to be invited and the papers to be presented at the Symposium. As a result of this procedure 78 active scientific participants from 22 countries followed the invitation, and 44 papers were presented in lecture and poster sessions. They are collected in this volume. At the Symposium an exhibition with experiments took place and the movie "An Introduction to the Analysis of Chaotic Dynamics" by E.J. Kreuzer et.al. was presented. The scientific lectures were devoted to the following topics: o Dynamic Structural Engineering Problems, o Analysis of Nonlinear Dynamic Systems, o Bifurcation Problems, o Chaotic Dynamics and Control Problems, o Miscellaneous Problems, o Experimental and Theoretical Investigations, o Chaotic Oscillations of Engineering Systems, o Characterization of Nonlinear Dynamic Systems, o Nonlinear Stochastic Systems.
Not only has Cosworth designed and supplied many race car engines, which won F1, CART, and many other Championship races, but it has also produced many celebrated high-performance road-car engines. In more recent times, its growing expertise in developing electronic data capture components, and in providing ultra-high-tech engine manufacturing facilities, has made it a world leader. The expansion continues, and in this book the Cosworth story has been brought up-to-the-minute to celebrate the 50th anniversary of the birth of the legendary DFV F1 engine.
In-fl ight simulation experiments performed in 1967 with a variable-stabil ity aircraft during the author's stay at Princeton University, motivated the study of handl ing characteristics of future transport aircraft with closed-loop fl ight control systems. In 1972, the first experiment took place at the National Aerospace Laboratory NLR, using one of its research aircraft. In anticipation of expected developments in (digital) fl ight control technology, the research programme following the first experiments was aimed at the establ ishment of quantitative handl ing qual ities criteria. An appreciable part of that programme has been sponsored by the Netherlands Agency for Aerospace Programs (Nederlands Instituut voor VI iegtuigontwikkel ing en Ruimtevaart) and the Department of Civil Aviation of the Netherlands (Rijksluchtvaartdienst). In 1981, a thorough review of the extensive and valuable data gathered was started. The result, presented in this book, was also included in the author's thesis for a Ph.D. degree of the Delft University of Technology. To introduce the reader to the multi-discipl inary field of handl ing qual ities research, introductory chapters are presented on longitudinal aircraft dynamics, closed-loop fl ight control systems using non-mechanical signal transmission, human pilot dynamics, hand I ing qual ities assessment techniques, and the present status of handl ing qual ity criteria.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Operating plant as close as possible to constraint boundaries so often brings economic benefits in industrial process control. This is the conundrum at the heart of this monograph by Tommy Gravdahl and Olav Egeland on stall control for compressors. Operation of the compressor closer to the surge line can increase operational efficiency and flexibility The approach taken by the authors follows the modern control system paradigm: -physical understanding, detailed modelling and simulation studies and finally control studies. The thoroughness of the presentation, bibliography and appendices indicates that the volume has all the hallmarks of being a classic for its subject. Despite the monograph's narrow technical content, the techniques and insights presented should appeal to the wider industrial control community as well as the gas turbine/compressor specialist. M. J. Grimble and M. A. |
You may like...
Proceedings of the 10th International…
Katia Lucchesi Cavalca, Hans Ingo Weber
Hardcover
R5,239
Discovery Miles 52 390
Recent Advances in CFD for Wind and…
Esteban Ferrer, Adeline Montlaur
Hardcover
R2,653
Discovery Miles 26 530
|