![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
This book presents proceedings of the third international conference in this field, continuing the success of the previous events. The peer-reviewed and the selected papers are arranged to make the proposed book the most recent and complete overview on the State-of-the-Art in Cable-Driven Parallel Robots! The conference took place 2017 in Quebec, QC, Canada,
This book gathers contributions presented at the 9th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2016. It includes both theory-oriented and practice-oriented chapters. The former focus on heavy-tailed time series and processes, PAR models, rational spectra for PARMA processes, covariance invariant analysis, change point problems, and subsampling for time series, as well as the fraction-of-time approach, GARMA models and weak dependence. In turn, the latter report on case studies of various mechanical systems, and on stochastic and statistical methods, especially in the context of damage detection. The book provides students, researchers and professionals with a timely guide to cyclostationary systems, nonstationary processes and relevant engineering applications.
This book highlights procedures utilized by the design departments of leading global manufacturers, offering readers essential insights into the electromagnetic and thermal design of rotating field (induction and synchronous) electric machines. Further, it details the physics of the key phenomena involved in the machines' operation, conducts a thorough analysis and synthesis of polyphase windings, and presents the tools and methods used in the evaluation of winding performance. The book develops and solves the machines' magnetic circuits, and determines their electromagnetic forces and torques. Special attention is paid to thermal problems in electrical machines, along with fluid flow computations. With a clear emphasis on the practical aspects of electric machine design and synthesis, the author applies his nearly 40 years of professional experience with electric machine manufacturers - both as an employee and consultant - to provide readers with the tools they need to determine fluid flow parameters and compute temperature distributions.
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusinski and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.
This interesting book examines the development of the engine from an historical perspective. Originally published in Japanese, The Romance of Engines' English translation offers readers insight into lessons learned throughout the engine's history. Topics Covered Include: Newcomen's Steam Engine The Watt Steam Engine Internal Combustion Engine Nicolaus August Otto and His Engine Sadi Carnot and the Adiabatic Engine Radial Engines Piston and Cylinder Problems Engine Life Problem of Cooling Engine Compartments Knocking Energy Conservation Bugatti Volkswagen Rolls Royce Packard Daimler-Benz DB601 Engine And more. Well-illustrated with numerous charts, drawings, and figures, The Romance of Engines is a book that belongs on the bookshelf of all engine designers, engine enthusiasts, and automotive historians.
Focusing on the theory and techniques of digital design and manufacturing for turbine blade investment casting, this book systematically summarizes the advances in applications in this field. It describes advanced digital design theory and methods and provides practical technical references for investment casting die design and manufacturing. The theories, methods and cases presented here are largely derived from the author's practical engineering experience and the research he and his team have carried out since the 1990s. It includes academic papers, technical reports and patent literature, and provides a valuable guide to engineers involved in the die-design process. Given its comprehensive coverage, the book makes a significant contribution to investment-casting die design and aero-engine blade manufacturing, while at the same time promoting the development of aero-engine manufacturing technologies
This book covers various topics regarding the design of compliant mechanisms using topology optimization that have attracted a great deal of attention in recent decades. After comprehensively describing state-of-the-art methods for designing compliant mechanisms, it provides a new topology optimization method for finding new flexure hinges. It then presents several attempts to obtain distributed compliant mechanisms using the topology optimization method. Further, it discusses a Jacobian-based topology optimization method for compliant parallel mechanisms, and introduces readers to the topology optimization of compliant mechanisms, taking into account geometrical nonlinearity and reliability. Providing a systematic method for topology optimization of flexure hinges, which are essential for designing compliant mechanisms, the book offers a valuable resource for all readers who are interested in designing compliant mechanism-based positioning stages. In addition, the methods for solving the de facto hinges in topology optimized compliant mechanisms will benefit all engineers seeking to design micro-electro-mechanical system (MEMS) structures.
This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science.
This book covers the various advanced manufacturing processes employed by manufacturing industries to improve their productivity in terms of socio-economic development. The authors present automated conventional and non-conventional machining techniques as well as virtual machining principles and techniques. Material removal by mechanical, chemical, thermal and electrochemical processes are described in detail. A glossary of key concepts is attached at end of the book.
This book presents the design methodology and electrical diagrams of symmetrical six-phase windings, the main elements of the six-phase that are being developed to help meet the demand for high power electric drive systems that are resilient and energy efficient. Chapters are fully illustrated and include detailed tables that provide a comprehensive analysis of energy exchange processes ranging from electrical to magnetic and reveal the advantages of such windings against analogical three-phase windings.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 6th conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in June 2017 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
This survey of thermal systems engineering combines coverage of thermodynamics, fluid flow, and heat transfer in one volume. Developed by leading educators in the field, this book sets the standard for those interested in the thermal-fluids market. Drawing on the best of what works from market leading texts in thermodynamics (Moran), fluids (Munson) and heat transfer (Incropera), this book introduces thermal engineering using a systems focus, introduces structured problem-solving techniques, and provides applications of interest to all engineers.
This work presents an investigation of the influence of different modeling approaches on the quality of fuel economy simulations of hybrid electric powertrains. The main focus is on the challenge to accurately include transient effects and reduce the computation time of complex models. Methods for the composition of entire powertrain models are analyzed as well as the modeling of the individual components internal combustion engine and battery. The results shall help with the selection of suitable models for specific simulation tasks and provide a deeper understanding of the dynamic processes within simulations of hybrid electric vehicles. About the Author Florian Winke was research associate at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), where he worked on modeling and simulation of hybrid electric powertrains. After finishing his doctorate, he joined a German automotive manufacturer, where he is working in software development in the field of hybrid operation strategies.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.
How many of us have a desire to make a home of a neglected building that is begging to be restored to its former splendour? This is just such a story - the renovation of a derelict windmill and in the process the discovery of a fascinating history. It charts the realization of a young boy's dream and, despite the numerous obstacles and problems, the successful culmination of many hopes and plans. The reader is invited to share with the author his hopes, worries, triumphs and setbacks as he strives to make the dream a reality. The saying "to throw one's cap over the windmill" means to act recklessly and provides an apt title for the book, reflecting Kenneth's impetuous pursuit of the propety which he secured and restored, seemingly against the odds.
This book will assess and compare several options for ammonia co-fueling of diesel locomotives with integrated heat recovery, multigeneration (including on-board hydrogen fuel production from ammonia), and emission reduction subsystems from energy, exergy, and environmental perspectives. Economic considerations will be presented to compare the cost of the proposed systems for different scenarios such as carbon-tax rates, diesel fuel cost and ammonia cost. Fossil fuel consumption and the associated negative environmental impact of their combustion is a significant global concern that requires effective, practical, and sustainable solutions. From a Canadian perspective, the Transportation Sector contributes more than 25% of national greenhouse gas emissions due to fossil fuel combustion, largely due to road vehicles (cars, light and heavy duty trucks). This is a complex and critical challenge to address, particularly in urban areas with high population density. There is a need to develop alternative energy solutions for mass passenger and freight transportation systems that will reduce both the traffic-volume of road vehicles as well as the emissions from the mass transportation systems. The book will be helpful to students in senior-level undergraduate and graduate level courses related to energy, thermodynamics, thermal sciences, combustion, HVAC&R, etc. The quantitative comparative assessment of such alternative energy systems provided by this book will be useful for researchers and professionals interested sustainable development.
The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.
This book provides important insights into the combustion behavior of novel energy crops and agricultural fuels. It describes a new experimental approach to combustion evaluation, involving fundamental, bench-scale and commercial-scale studies. The studies presented were conducted on two representative biomass energy crops: a woody biomass poplar (Populus sp. or poplar) and an herbaceous biomass brassica (Brassica carinata or brassica). Moreover, agricultural residues of Manihot esculenta or cassava were also analyzed. The main accomplishments of this work are threefold. Firstly, it offers an extensive characterization of the above-mentioned fuels, their ash chemistry and their emissions of both solid particles and gaseous compounds that form at typical grate combustion conditions. Secondly, it presents an in-depth analysis of ash fractionation processes for major ash species. Thirdly, it describes the role of some critical and volatile key elements (K, Cl, S and P) in grate-fired combustion systems and elucidates the main differences in the ash chemistry during combustion of Si-rich and P-rich fuels. All in all, this work provides novel insights on the basic and fundamental mechanisms of biomass grate combustion with a special focus on ash transformation and highlights important issues and recommendations that need to be considered for an appropriate conversion of ash-rich fuels and for the development of future technology in the context of both small- and medium-scale biomass-based heat and power production.
This book presents a basic introduction to micromechanisms and microactuators, particularly to their basic configurations and design. This book fills the persisting gap in the published literature on the mechanical manipulative aspects of micromechanisms. It also helps in offering specialized introductory courses on micromechanisms and microactuators not as part of MEMS sensing devices, but as mechanical manipulative systems. The level of the book is suitable for use in both undergraduate and introductory graduate programmes. The book presents an overview of miniaturization and scaling laws, basic design principles of micro-sized mechanisms and actuators, micro-fabrication processes, and some futuristic issues. The volume contains a large number of figures and illustrations for easy understanding by the readers. It will also be useful to researchers and professionals looking for an introduction to the topic.
This volume contains the Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, held in Aalborg, Denmark, 2-4 June, 2015. The book contains papers on recent advances in the design of mechanisms and their robotic applications. It treats the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications, among others. The book can be used by researchers and engineers in the relevant areas of mechanisms, machines and robotics.
This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation and Energy but will also be useful for professionals. The book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications.
In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.
This book reports on the latest advances in the analysis of non-stationary signals, with special emphasis on cyclostationary systems. It includes cutting-edge contributions presented at the 7th Workshop on “Cyclostationary Systems and Their Applications,” which was held in Gródek nad Dunajcem, Poland, in February 2014. The book covers both the theoretical properties of cyclostationary models and processes, including estimation problems for systems exhibiting cyclostationary properties, and several applications of cyclostationary systems, including case studies on gears and bearings, and methods for implementing cyclostationary processes for damage assessment in condition-based maintenance operations. It addresses the needs of students, researchers and professionals in the broad fields of engineering, mathematics and physics, with a special focus on those studying or working with nonstationary and/or cyclostationary processes. |
![]() ![]() You may like...
Defying the Pains of Gravity - Using…
Jeff LaBianco DPT CSCS
Hardcover
Fuzzy Logic - Recent Applications and…
Jenny Carter, Francisco Chiclana, …
Hardcover
R4,677
Discovery Miles 46 770
Applications in Finance, Investments…
Diem Ho, Thomas Schneeweis
Hardcover
R4,748
Discovery Miles 47 480
Networks in the Global World V…
Artem Antonyuk, Nikita Basov
Hardcover
R4,631
Discovery Miles 46 310
|