![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
This book sheds light on the development of traditional and advanced optimization methods. Their use in various tradition and non-tradition manufacturing and machining processes for an improved manufacturability is reported. This includes key elements of implementing conventional statistical methods, multi-objective and multi-criteria decision-making methods and evolution of single and multi-target optimization techniques using soft computing to enhance production performance, efficiency and sustainability in manufacturing. The latest research in this area as well as possible avenues of future research are also highlighted.
Marcel Eberbach provides insight into the investigations of the knocking behavior of methane-based fuels and compares them with the knocking behavior of very high knock resistant liquid fuels during engine combustion. With pressure-based knock detection algorithms and thermodynamic evaluation, the atypical knocking combustion phenomena are evaluated with respect to the abnormalities on the heat release curve. Based on the investigated fuels an engine specific relation between the fuel index numbers (RON and MN) and the actual knock resistance of the fuels by means of the motor methane number was established and applied to the investigated gaseous and liquid fuels during knocking combustion.
This book presents a selection of preliminary sizing procedures for turbomachinery. Applicable to both conventional and non-conventional fluids, these procedures enable users to optimize the kinematics, thermodynamics and geometry of the turbomachinery (in the preliminary design phase) using geometric correlations and losses models; to accurately predict the efficiency of turbomachinery - in most cases, in excellent agreement with CFD calculations; and to consistently analyze all turbomachines (axial and radial turbines, axial and centrifugal compressors, centrifugal pumps). The book is intended for bachelor's and master's students in industrial, mechanical and energy engineering, as well as researchers and professionals in the energy systems and turbomachinery sectors, guiding them step by step through the first sizing of turbomachines and the verification of the technological feasibility of turbomachines designed for new conversion systems operating with unconventional fluids.
This book describes the theoretical framework of parallel manipulators and presents examples of their application. The theoretical part begins with the theory of parallel manipulator synthesis. Working on this basis, various topology designs of one-loop and multiloop parallel manipulators are then obtained. The next section describes the zero parameters method for the analysis of mechanism (manipulator) structure with closed kinematic circuits, and includes examples of its application, highlighting its advantages compared to traditional methods. The book then presents the redundant parameters method for determining the position of special parallel manipulator links, and discusses its application in solving the direct problem of link position for multiloop manipulators. It also addresses one-loop and multiloop manipulators, and includes a solution for the direct and inverse link position problems of kinematics. In closing, the book presents a range of potential applications for parallel manipulator. These examples are intended to promote the development and implementation of new engineering solutions, e.g. in seismic protection systems, renewable energy and other areas. The book includes a wealth of material that can be used for teaching undergraduate, graduate and PhD students majoring in robotics, automation and related fields, and can also be used by researchers to solve problems in connection with introducing robotics technologies.
This book offers a comprehensive and timely overview of internal combustion engines for use in marine environments. It reviews the development of modern four-stroke marine engines, gas and gas-diesel engines and low-speed two-stroke crosshead engines, describing their application areas and providing readers with a useful snapshot of their technical features, e.g. their dimensions, weights, cylinder arrangements, cylinder capabilities, rotation speeds, and exhaust gas temperatures. For each marine engine, information is provided on the manufacturer, historical background, development and technical characteristics of the manufacturer's most popular models, and detailed drawings of the engine, depicting its main design features. This book offers a unique, self-contained reference guide for engineers and professionals involved in shipbuilding. At the same time, it is intended to support students at maritime academies and university students in naval architecture/marine engineering with their design projects at both master and graduate levels, thus filling an important gap in the literature.
This book introduces the engineering application of the discrete element method (DEM), especially the simulation analysis of the typical equipment (scraper conveyor, coal silos, subsoiler) in the coal and agricultural machinery. In this book, the DEM is applied to build rigid and loose coupling model, and the kinematic effect of the bulk materials, the mechanical effect of the interaction between the bulk materials, and the mechanical equipment in the operation process of the relevant equipment are studied. On this basis, the optimization design strategy of the relevant structure is proposed. This book effectively promotes the application of DEM in engineering, analyzes the operation state, failure mechanism, and operation effect of related equipment in operation, and provides theoretical basis for the optimal design of equipment. The book is intended for undergraduate and graduate students who are interested in mechanical engineering, researchers investigating coal and agricultural machinery, and engineers working on designing related equipments.
What type of sustainable concepts will meet future mobility requirements? Digitization is leading to the growth of the "sharing society". Especially in megacities, automation and the challenges to last mile logistics are likely to increase significantly. The question is: How can we use active development methods to design clean, efficient and intelligent mobility solutions? The international congress "Vehicles of Tomorrow" is an information and communication platform that showcases all aspects of the mobility transformation.
This book introduces readers to the theory, design and applications of automotive transmissions. It covers multiple categories, e.g. AT, AMT, CVT, DCT and transmissions for electric vehicles, each of which has its own configuration and characteristics. In turn, the book addresses the effective design of transmission gear ratios, structures and control strategies, and other topics that will be of particular interest to graduate students, researchers and engineers. Moreover, it includes real-world solutions, simulation methods and testing procedures. Based on the author's extensive first-hand experience in the field, the book allows readers to gain a deeper understanding of vehicle transmissions.
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important to understand combustion mechanisms, in particular, the role of turbulence within this process. This monograph presents a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, Peters considers the three distinct cases of premixed, nonpremixed, and partially premixed combustion, respectively. By demonstrating the current theories of turbulent combustion within a cohesive presentation, this book makes a unified contribution to engineering and applied mathematics.
This book gathers the proceedings of the 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2020), held in Belgrade, Serbia, on 1-4 June 2020. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of manufacturing. The book addresses a wide range of topics, including: design of smart and intelligent products, developments in CAD/CAM technologies, rapid prototyping and reverse engineering, multistage manufacturing processes, manufacturing automation in the Industry 4.0 model, cloud-based products, and cyber-physical and reconfigurable manufacturing systems. By providing updates on key issues and highlighting recent advances in manufacturing engineering and technologies, the book supports the transfer of vital knowledge to the next generation of academics and practitioners. Further, it will appeal to anyone working or conducting research in this rapidly evolving field.
This book gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. The contents reflect the outcomes of the activities of RAAD (International Conference on Robotics in Alpe-Adria-Danube Region) in 2020.
This volume gathers the latest advances, innovations, and applications in the field of robotics engineering, as presented by leading international researchers and engineers at the Latin American Symposium on Industrial and Robotic Systems (LASIRS), held in Tampico, Mexico on October-November 30-01 2019. The contributions cover all major areas of R&D and innovation in simulation, optimization, and control of robotics, such as design and optimization of robots using numerical and metaheuristic methods, autonomous and control systems, industrial compliance solutions, numerical simulations for manipulators and robots, metaheuristics applied to robotics problems, Industry 4.0, control and automation in petrochemical processes, simulation and control in aerospace and aeronautics, and education in robotics. The conference represented a unique platform to share the latest research and developments in simulation, control and optimization of robotic systems, and to promote cooperation among specialists in machine and mechanism area.
This volume gathers the latest fundamental research contributions, innovations, and applications in the field of design and analysis of complex robotic mechanical systems, machines, and mechanisms, as presented by leading international researchers at the 1st USCToMM Symposium on Mechanical Systems and Robotics (USCToMM MSR 2020), held in Rapid City, South Dakota, USA on May 14-16, 2020. It covers highly diverse topics, including soft, wearable and origami robotic systems; applications to walking, flying, climbing, underground, swimming and space systems; human rehabilitation and performance augmentation; design and analysis of mechanisms and machines; human-robot collaborative systems; service robotics; mechanical systems and robotics education; and the commercialization of mechanical systems and robotics. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting and impactful research results that will inspire novel research directions and foster multidisciplinary research collaborations among researchers from around the globe.
This book presents the development of SLAM-based mobile robot control systems as an integrated approach that combines the localization, mapping and motion control fields, and reviews several techniques that represent the basics of the mathematical description of wheeled robots, their navigation and path planning approaches, localization and map creating techniques. It examines SLAM paradigms and Bayesian recursive state and map estimation techniques, which include Kalman and particle filtering, and enable the development of a SLAM-based integrated system for the inspection task performed. The system's development is divided into two phases: a single-robot approach and multirobot inspection system. The book describes an original approach to 2D SLAM in multi-floor buildings that covers each 2D level map, as well as continuous 3D pose tracking, and views the multirobot inspection system as a group of homogeneous mobile robots. The last part of the book is dedicated to multirobot map creation and the development of path planning solutions, which allow the robots' homogeneous behavior and configuration to be used to develop a multirobot system without theoretical limitations on the number of robots used.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
The internal combustion engine that powers the modern automobile has changed very little from its initial design of some eighty years ago. Unlike many high tech advances, engine design still depends on an understanding of basic fluid mechanics and thermodynamics. This text offers a fresh approach to the study of engines, with an emphasis on design and on fluid dynamics. Professor Lumley, a renowned fluid dynamicist, provides a lucid explanation of how air and fuel are mixed, how they get into the engine, what happens to them there, and how they get out again. Particular attention is given to the complex issue of pollution. Every chapter includes numerous illustrations and examples and concludes with homework problems. Examples are taken from the early days of engine design, as well as the latest designs, such as stratified charge gasoline direct injection engines. It is intended that the text be used in conjunction with the Stanford Engine Simulation Program (ESP). This user-friendly, interactive software tool answers a significant need not addressed by other texts on engines. Aimed at undergraduate and first-year graduate students, the book will also appeal to hobbyists and car buffs who will appreciate the wealth of illustrations of classic, racing, and modern engines.
This book offers professionals working at power plants guidelines and best practices for vibration problems, in order to help them identify the respective problem, grasp it, and successfully solve it. The book provides very little theoretical information (which is readily available in the existing literature) and doesn't assume that readers have an extensive mathematical background; rather, it presents a range of well-documented, real-world case studies and examples drawn from the authors' 50 years of experience at jobsites. Vibration problems don't crop up very often, thanks to good maintenance and support, but if and when they do, most power plants have very little experience in assessing and solving them. Accordingly, the case studies discussed here will equip power plant engineers to quickly evaluate the vibration problem at hand (by deciding whether the machine is at risk or can continue operating) and find a practical solution.
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 8th conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in May 2019 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
This book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed. This is the most advanced reference guide to the state of the art in gear engineering. Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined. The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
This book bridges the gap between the demand for micro-featured components on the one hand, and successful micromachining of miniature products on the other. In addition to covering micromachining in the broader sense, it specifically addresses novel machining strategies implemented in various advanced micromachining processes to improve machining accuracy, energy consumption, component durability, and miniature-scale applicability. The book's main goal is to present the capabilities of advanced micromachining processes in terms of miniature product manufacturing by highlighting various innovative machining strategies that can be used to augment the production scale and precision alike.
Sebastian Hann describes the development of a quasi-dimensional burn rate model that enables the prediction of a fuel variation, without the need for a recalibration of the model. The model is valid for spark-ignition combustion engines powered by conventional and carbon-neutral fuels. Its high predictive ability was achieved by modeling the fuel-dependent laminar flame speed based on reaction kinetics calculations. In addition, the author discards a fuel influence on flame wrinkling by performing an engine measurement data analysis. He investigates the fuel influence on engine knock and models it via ignition delay times obtained from reaction kinetics calculations.
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
The book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as: straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed. Includes fully-developed exercises to draw the reader's attention to the problems that are of interest to the designer, as well as to clarify the calculation procedure Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
This book presents a step-by-step methodology for the design of ramjet engines. It explores ramjet combustion, provides guidelines on how to size the engines, and discusses performance analysis. The book begins with an introduction to ramjet design, including fundamental definitions in the field. It then discusses ramjet engine performance, and fuels which can be used. Several types of ramjet engines are then explored, and guidelines for their design are presented, including flame holders, injectors, and combustors. Finally, the book concludes with a discussion of the types of materials which should be used for ramjet engines. This book is of interest to engine designers and engineers, researchers, and graduate students, as it collates research in a succinct, clear guide to the issue of designing ramjet engines. |
You may like...
Advanced Gear Engineering
Veniamin Goldfarb, Evgenii Trubachev, …
Hardcover
R7,178
Discovery Miles 71 780
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
Dynamics and Control of Advanced…
Valerii P. Matveenko, Michael Krommer, …
Hardcover
R2,661
Discovery Miles 26 610
Compact Heat Exchangers - Selection…
J. E. Hesselgreaves, Richard Law, …
Paperback
|