![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
This book focuses on the performance and application of fluidic nozzle throats for solid rocket motors, discussing their flow details and characterization performance, as well as the influence of the particle phase on their performance. It comprehensively covers a range of fluidic nozzle throats in solid rocket motors and is richly illustrated with impressive figures and full-color photographs. It is a valuable resource for students and researchers in the fields of aeronautics, astronautics and related industries wishing to understand the fundamentals and theories of fluidic nozzle throats and engage in fluidic nozzle throat analysis and design.
This book examines an intelligent system for the inspection planning of prismatic parts on coordinate measuring machines (CMMs). The content focuses on four main elements: the engineering ontology, the model of inspection planning for prismatic parts on CMMs, the optimisation model of the measuring path based on an ant-colony approach, and the model of probe configuration and setup planning based on a genetic algorithm. The model of inspection planning for CMMs developed here addresses inspection feature construction, the sampling strategy, probe accessibility analysis, automated collision-free operation, and probe path planning. The proposed model offers a novel approach to intelligent inspection, while also minimizing human involvement (and thus the risk of human error) through intelligent planning of the probe configuration and part setup. The advantages of this approach include: reduced preparation times due to the automatic generation of a measuring protocol; potential optimisation of the measuring probe path, i.e., less time needed for the actual measurement; and increased planning process autonomy through minimal human involvement in the setup analysis and probe configuration.
This volume comprises select papers presented at the International Conference on Advances in Manufacturing Technology (ICAMT 2018). It includes contributions from different researchers and practitioners working in the field of advanced manufacturing technology. This book covers diverse topics of contemporary manufacturing technology including material processes, machine tools, cutting tools, robotics and automation, manufacturing systems, optimization technologies, 3D scanning and re-engineering, and 3D printing. Computer applications in design, analysis, and simulation tools for solving manufacturing problems at various levels starting from material designs to complex manufacturing systems are also discussed. This book will be useful for students, researchers, and practitioners working in the field of manufacturing technology.
This book deals with in-cylinder pressure measurement and its post-processing for combustion quality analysis of conventional and advanced reciprocating engines. It offers insight into knocking and combustion stability analysis techniques and algorithms in SI, CI, and LTC engines, and places special emphasis on the digital signal processing of in-cylinder pressure signal for online and offline applications. The text gives a detailed description on sensors for combustion measurement, data acquisition, and methods for estimation of performance and combustion parameters. The information provided in this book enhances readers' basic knowledge of engine combustion diagnostics and serves as a comprehensive, ready reference for a broad audience including graduate students, course instructors, researchers, and practicing engineers in the automotive, oil and other industries concerned with internal combustion engines.
This book examines the possibility of automating pasture care by fusing conventional technologies with modern sensor technologies, including the accompanying electrification. It subsequently explores the feasibility and benefits of such a system on the basis of a prototype. The overall challenge in fodder production, and in milk and meat production, is to shift the focus away from the economic aspects and toward achieving a better balance with ecological and societal aspects. In the future, pastureland will become an increasingly valuable resource. Good pasture turf is the basis of high grazing performance and an efficient grazing farm; reduced quantity and quality of pasture forage are chiefly due to insufficient pasture care. The prototype developed and discussed here, based on a commercially available remote-controlled mulcher, performs the selective pasture maintenance needed for precision farming. The vehicle has been upgraded with a GPS system for automatic guidance, while a 2D laser scanner is used to localise relevant spots in real-time. The pasture maintenance operations include mulching of un-grazed spots and reseeding of damage done by footsteps. The book presents the results of field tests on effective spot detection and the fuel-saving benefits of selective mulching.
Despite the increasing interest in multidimensional combustion engine simulation from researchers and industry, the field of application has been restricted to stationary operating points for turbocharged engines. Andreas Kachele presents a 3D-CFD approach to extend the simulation into the transient regime, enabling the detailed analysis of phenomena during changes in engine operating point. The approach is validated by means of a virtual hot gas test bench and experiments on a two-cylinder engine.
This volume contains the Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics, held in Udine, Italy, 11-13 September, 2018. It includes recent advances in the design of mechanisms and their robotic applications. It treats, among others, the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications. This book can be used by students, researchers and engineers in the relevant areas of mechanisms, machines and robotics.
This book presents insights in green techniques used in conventional and advanced machining. It consists of various experimental case studies conducted by the authors on green machining of difficult-to-machine materials, polymer and ceramic materials. Effects of green techniques / processes on machining properties like material removal rate, surface quality, geometric accuracy, productivity, and environment while machining various materials are reported.
Pull up what you need to know. Pumps and hydraulic equipment are now used in more facets of industry than ever before. Whether you are a pump operator or you encounter pumps and hydraulic systems through your work in another skilled trade, a basic knowledge of the practical features, principles, installation, and maintenance of such systems is essential. You'll find it all here, fully updated with real-world examples and 21st-century applications.This title helps to: learn to install and service pumps for nearly any application; understand the fundamentals and operating principles of pump controls and hydraulics; service and maintain individual pumping devices that use smaller motors; see how pumps are used in robotics, taking advantage of hydraulics to lift larger, heavier loads; handle new types of housings and work with the latest electronic controls; know the appropriate servicing schedule for different types of pumping equipment; and, also install and troubleshoot special-service pumps.
Uses an integrated approach to show the interrelationships between thermodynamics, heat transfer and fluid dynamics, stressing the physics of each. Mathematical description is included to allow the solution of simple problems in thermal sciences. New to this edition----SI and English units plus twice as many example problems which emphasize practical applications of the principles discussed.
This book gathers the proceedings of the 12th International Conference on Measurement and Quality Control - Cyber Physical Issues (IMEKO TC 14 2019), held in Belgrade, Serbia, on 4-7 June 2019. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of measurement of geometrical quantities. The book addresses a wide range of topics, including: 3D measurement of GPS characteristics, measurement of gears and threads, measurement of roughness, micro- and nano-metrology, laser metrology for precision measurements, cyber physical metrology, optical measurement techniques, industrial computed tomography, multisensor techniques, intelligent measurement systems, evaluating measurement uncertainty, dimensional management in industry, product quality assurance methods, and big data analytics. By providing updates on key issues and highlighting recent advances in measurement and quality control, the book supports the transfer of vital knowledge to the next generation of academics and practitioners.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 7th conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in May 2018 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
This volume presents the latest academic research and industrial applications in the area of mechanisms, robotics and dynamics. Contributions cover such topics as biomedical applications, control issues of mechanical systems, dynamics of multi-body systems, experimental mechanics, haptic systems, history of mechanism science, industrial and non-industrial applications, linkages and cams, mechanical transmissions and gears, mechanics of robots and manipulators, theoretical kinematics. Resulting from the 7th European Conference on Mechanism Science, which was held at RWTH Aachen University on September 4-6, 2018, this works comprises an overview on current research activities across Europe. .
This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots.
Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the seveth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Rotating Machinery, Hybrid Testing, Vibro-Acoustics & Laser Vibrometry, including papers on: Rotating Machinery Vibro-Acoustics Experimental Techniques Scanning Laser Doppler Vibrometry Methods
This book investigates the utilization of harmonics in the permanent magnet (PM) or rotor shape to improve the torque density of PM brushless AC machines including three-phase inner rotor and outer rotor machines, five-phase machines, dual three-phase machines, linear machines, by means of analytical, finite element analyses, and as well as experimental validation. The torque density can be improved while the torque ripple remains low in PM shaping utilizing the 3rd harmonic. In this book, the analytical expression of output torque is derived for PM machines with rotor shape using the 3rd harmonic, and then the optimal 3rd harmonic for maximizing torque is analytically obtained. The book compares the PM shape in surface-mounted PM (SPM) machines and the rotor lamination shape in interior PM (IPM) machines utilizing the 3rd harmonic, and it becomes clear that their shaping methods and amount of torque improvement are different. In a five-phase PM machine, the 3rd harmonic can be utilized in both the current waveform and PM shapes to further improve the output torque. For the dual three-phase SPM machines without deteriorating the torque more than 30% when the optimal 3rd harmonic into both the current and PM shape are injected. The harmonics in airgap flux density have significant influence on the cogging torque, stator iron flux distribution, and radial force between the rotor and stator. These effects has been investigated as well in this book.
This book discusses the core principles and practical applications of a brand new machine category: liquid-metal soft machines and motors. After a brief introduction on the conventional soft robot and its allied materials, it presents the new conceptual liquid-metal machine, which revolutionizes existing rigid robots, both large and small. It outlines the typical features of the soft liquid-metal materials and describes the various transformation capabilities, mergence of separate metal droplets, self-rotation and planar locomotion of liquid-metal objects under external or internal mechanism. Further, it introduces a series of unusual phenomena discovered while developing the shape changeable smart soft machine and interprets the related mechanisms regarding the effects of the shape, size, voltage, orientation and geometries of the external fields to control the liquid-metal transformers. Moreover, the book illustrates typical strategies to construct a group of different advanced functional liquid-metal soft machines, since such machines or robots are hard to fabricate using rigid-metal or conventional materials. With highly significant fundamental and practical findings, this book is intended for researchers interested in establishing a general method for making future smart soft machine and accompanying robots.
This book provides readers with a timely snapshot of the potential offered by and challenges posed by signal processing methods in the field of machine diagnostics and condition monitoring. It gathers contributions to the first Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, held in Setif, Algeria, on April 9-10, 2017, and organized by the Applied Precision Mechanics Laboratory (LMPA) at the Institute of Precision Mechanics, University of Setif, Algeria and the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) at the National School of Engineers of Sfax. The respective chapters highlight research conducted by the two laboratories on the following main topics: noise and vibration in machines; condition monitoring in non-stationary operations; vibro-acoustic diagnosis of machinery; signal processing and pattern recognition methods; monitoring and diagnostic systems; and dynamic modeling and fault detection.
This book trains engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book walks readers through the steps required to improve machining productivity through chatter avoidance and reduced surface location error, and covers in detail topics such as modal analysis (including experimental methods) to obtain the tool point frequency response function, descriptions of turning and milling, force modeling, time domain simulation, stability lobe diagram algorithms, surface location error calculation for milling, beam theory, and more. This new edition includes updates throughout the entire text, new exercises and examples, and a new chapter on machining tribology. It is a valuable resource for practicing manufacturing engineers and graduate students interested in learning how to improve machining productivity through consideration of the process dynamics.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This first volume covers the following main topics: Active Components and Vibration Control; Balancing; Bearings: Fluid Film Bearings, Magnetic Bearings, Rolling Bearings and Seals; and Blades, Bladed Systems and Impellers.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This third volume covers the following main topics: dynamic analysis and stability; electromechanical interactions in rotordynamics; nonlinear phenomena in rotordynamics; rotordynamics of micro, nano and cryogenic machines; and fluid structure interactions in rotordynamics.
A modern pedagogical treatment of the latest industry trends in rocket propulsion, developed from the authors' extensive experience in both industry and academia. Students are guided along a step-by-step journey through modern rocket propulsion, beginning with the historical context and an introduction to top-level performance measures, and progressing on to in-depth discussions of the chemical aspects of fluid flow combustion thermochemistry and chemical equilibrium, solid, liquid, and hybrid rocket propellants, mission requirements, and an overview of electric propulsion. With a wealth of homework problems (and a solutions manual for instructors online), real-life case studies and examples throughout, and an appendix detailing key numerical methods and links to additional online resources, this is a must-have guide for senior and first year graduate students looking to gain a thorough understanding of the topic along with practical tools that can be applied in industry.
This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.
The book presents the select proceedings of the Third International Conference on Emerging Research in Civil, Aeronautical and Mechanical Engineering (ERCAM 2021) and focuses on the broad themes of mechanical and aeronautical engineering. The book covers research developments in the field of materials, mechanics, structures, systems and sustainability. Various topics covered in this book include smart and multifunctional composite materials, nano materials, computational mechanics, solid mechanics, kinematics and dynamics, fatigue, fracture and life cycle analysis, smart structures-vibration and noise control, vibration, acoustics and condition monitoring, thermal/fluid systems and analysis. The book will be useful for students, researchers and professionals working in the various areas of mechanical engineering. |
![]() ![]() You may like...
Applied Thermodynamics for Engineering…
T.D. Eastop, A. McConkey
Paperback
R2,528
Discovery Miles 25 280
Cable-Driven Parallel Robots…
Marc Gouttefarde, Tobias Bruckmann, …
Hardcover
R6,729
Discovery Miles 67 290
Essay on Machines in General (1786…
Raffaele Pisano, Jennifer Coopersmith, …
Hardcover
R3,758
Discovery Miles 37 580
Proceedings of IncoME-V & CEPE Net-2020…
Dong Zhen, Dong Wang, …
Hardcover
R8,433
Discovery Miles 84 330
Intelligent Fixtures for the…
H.-Christian Moehring, Petra Wiederkehr, …
Hardcover
R4,039
Discovery Miles 40 390
SLAM Techniques Application for Mobile…
Andrii Kudriashov, Tomasz Buratowski, …
Hardcover
R4,067
Discovery Miles 40 670
|