Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
This unique collection is the post-conference proceedings of the 4th "International Conference on Field and Service Robotics" (FSR). This book has authoritative contributors and presents current developments and new directions in field and service robotics. The book represents a cross-section of the current state of robotics research from one particular aspect: field and service applications, and how they reflect on the theoretical basis of subsequent developments.
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries.
Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It provides the practising engineer with many technical information of the manufacturing processes and collects essential aspects such as maximum obtainable precision, errors or reference values. Many examples of concrete calculations, problems and their solutions illustrate the material and support the learning reader. The internet addresses given in the appendix provide with a fast link to more information sources.
There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched. The thesis focuses on analysis and design of high-speed PM machines and uses a practical design of a high-speed spindle drive as a test case. Phenomena, both mechanical and electromagnetic, that take precedence in high-speed permanent magnet machines are identified and systematized. The thesis identifies inherent speed limits of permanent magnet machines and correlates those limits with the basic parameters of the machines. The analytical expression of the limiting quantities does not only impose solid constraints on the machine design, but also creates the way for design optimization leading to the maximum mechanical and/or electromagnetic utilization of the machine. The models and electric-drive concepts developed in the thesis are evaluated in a practical setup.
Electrical Machines primarily covers the basic functionality and the role of electrical machines in their typical applications. The effort of applying coordinate transforms is justified by obtaining a more intuitive, concise and easy-to-use model. In this textbook, mathematics is reduced to a necessary minimum, and priority is given to bringing up the system view and explaining the use and external characteristics of machines on their electrical and mechanical ports. Covering the most relevant concepts relating to machine size, torque and power, the author explains the losses and secondary effects, outlining cases and conditions in which some secondary phenomena are neglected. While the goal of developing and using machine mathematical models, equivalent circuits and mechanical characteristics persists through the book, the focus is kept on physical insight of electromechanical conversion process. Details such as the slot shape and the disposition of permanent magnets and their effects on the machine parameters and performance are also covered.
In this book, Yoshimura provides a review of the UHV related development during the last decades. His very broad experience in the design enables him to present us this detailed reference. After a general description how to design UHV systems, he covers all important issue in detail, like pumps, outgasing, Gauges, and Electrodes for high voltages. Thus, this book serves as reference for everybody using UVH in scientific equipment.
Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation. Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing. Stress engineers, lecturers, researchers and students will find Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
"Surface Integrity in Machining" describes the fundamentals and recent advances in the study of surface integrity in machining processes. "Surface Integrity in Machining" gathers together research from international experts in the field. Topics covered include: the definition of surface integrity and its importance in functional performance; surface topography characterization and evaluation; microstructure modification and the mechanical properties of subsurface layers; residual stresses; surface integrity characterization methods; and surface integrity aspects in machining processes. A useful reference for researchers in tribology and materials, mechanical and materials engineers, and machining professionals, "Surface Integrity in Machining" can be also used as a textbook by advanced undergraduate and postgraduate students.
This book starts with the invention of the wheel nearly 5000 years ago, and via Archimedes, Aristotle and Hero describes the first practical applications such as water wheels and grinding wheels, pushing on to more rigorous scientific research by inquiring minds such as Leonardo da Vinci and Copernicus in later ages. Newton and Leibniz followed, and beam structures received maximum attention three centuries ago. As focus shifts and related disciplines such as mathematics and physics also develop, slowly turbomachines and rotor and blade dynamics as we know the subject now take shape. While the book traces the events leading to Laval and Parsons Turbines, the emphasis is on rotor and blade dynamics aspects that pushed these turbines to their limits in the last century. The tabular and graphical methods developed in the pre-computer era have taken different form in the last fifty years through finite element methods. The methods evolved in the last century are discussed in detail to help modern day designers and researchers. This book will be useful to young researchers and engineers in industry and educational institutions engaged in rotor and blade dynamics work in understanding the past and the present developments and what is expected in future. Faculty and industry engineers can benefit from this broad perspective history in formulating their developmental plans.
In a world suffering from an ageing population and declining birth rate, service robotics and mechatronics have an increasingly vital role to play in maintaining a safe and sustainable environment for everyone. Mechatronics can be used in the reconstruction or restoration of various environments which we rely upon to survive; for example the reconstruction of a city after an earthquake, or the restoration of polluted waters This collection of papers was originally presented at the 7th International Conference on Machine Automation, 2008, in Awaji, Japan, and covers a variety of new trends in service robotics and mechatronics. Service Robotics and Mechatronics showcases the latest research in the area to provide researchers and scientists with an up-to-date source of knowledge and basis for further study, as well as offering graduate students valuable reference material.
As today s spark-ignition and diesel engines have to fulfil constantly increasing demands with regard to CO2 reduction, emissions, weight and lifetime, detailed knowledge of the components of an internal combustion engine is absolutely essential. Automotive engineers can no longer survive without such expertise, regardless of whether they are involved in design, development, testing or maintenance. This text book provides answers to questions relating to the design, production and machining of cylinder components in a comprehensive technical analysis.
SYROM conferences have been organized since 1973 by the Romanian branch of the International Federation for the Promotion of Mechanisms and Machine Science IFToMM, Year by year the event grew in quality. Now in its 10th edition, international visibility and recognition among the researchers active in the mechanisms science field has been achieved. SYROM 2009 brought together researchers and academic staff from the field of mechanisms and machine science from all over the world and served as a forum for presenting the achievements and most recent results in research and education. Topics treated include conceptual design, kinematics and dynamics, modeling and simulation, synthesis and optimization, command and control, current trends in education in this field, applications in high-tech products. The papers presented at this conference were subjected to a peer-review process to ensure the quality of the paper, the engineering significance, the soundness of results and the originality of the paper. The accepted papers fulfill these criteria and make the proceedings unique among the publications of this type.
The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.
"Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 "Flow and Combustion in Future Gas Turbine Combustion Chambers" funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts
In constant effort to eliminate mine danger, international mine action community has been developing safety, efficiency and cost-effectiveness of clearance methods. Demining machines have become necessary when conducting humanitarian demining where the mechanization of demining provides greater safety and productivity. Design of Demining Machines describes the development and testing of modern demining machines in humanitarian demining. Relevant data for design of demining machines are included to explain the machinery implemented and some innovative and inspiring development solutions. Development technologies, companies and projects are discussed to provide a comprehensive estimate of the effects of various design factors and to proper selection of optimal parameters for designing the demining machines. Covering the dynamic processes occurring in machine assemblies and their components to a broader understanding of demining machine as a whole, Design of Demining Machines is primarily tailored as a text for the study of the fundamentals and engineering techniques involved in the calculation and design of demining machines. It will prove as useful resource for engineers, designers, researchers and policy makers working in this field.
Every four years, Schaeffler provides an insight into its latest developments and technologies from the engine, transmission and chassis as well as hybridization and electric mobility sectors. In 2014 the Schaeffler Symposium with the motto "Solving the Powertrain Puzzle" took place from 3th to 4th of April in Baden-Baden. Mobility for tomorrow is the central theme of this proceeding. The authors are discussing the different requirements, which are placed on mobility in different regions of the world. In addition to the company's work in research and development, a comprehensive in-house mobility study also provides a reliable basis for the discussion. The authors are convinced that there will be a paradigm shift in the automotive industry. Issues such as increasing efficiency and advancing electrification of the powertrain, automatic and semi-automatic driving, as well as integration in information networks will define the automotive future. In addition, the variety of solutions available worldwide will become increasingly more complex and mobility patterns will also change rapidly. However, this does not mean that cars will drive virtually in the future. Powertrains based on internal combustion engines will still dominate for a very long time and demonstrate new strengths in combination with hybrid drives. Transmissions will also gain in importance as the link between the internal combustion engine and electric motor. The proceeding "Solving the Powertrain Puzzle" contains 34 technical papers from renowned experts and researchers in the field of automotive engineering.
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.
Direct injection spark-ignition engines are becoming increasingly important, and their potential is still to be fully exploited. Increased power and torque coupled with further reductions in fuel consumption and emissions will be the clear trend for future developments. From today's perspective, the key technologies driving this development will be new fuel injection and combustion processes. The book presents the latest developments, illustrates and evaluates engine concepts such as downsizing and describes the requirements that have to be met by materials and operating fluids. The outlook at the end of the book discusses whether future spark-ignition engines will achieve the same level as diesel engines.
This book considers the behavior of fluids in a low-gravity environment (e.g. spacecraft) with special emphasis on application in PMD (propellant management device) systems. Since PMD designs are not testable on ground and thus completely rely on analytical or numerical concepts, this book treats three different flow problems with analytical, numerical and experimental means. These problems are linked together by the same set of equations and boundary conditions.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
Journal bearings, which are used in all kinds of rotating machinery, do not only support static loads, such as the weight of rotors and load caused by transmitted torque of reduction gears, but are, in addition almost the only machine element that is able to suppress various exciting forces acting on the rotating shaft. As rotating machines have become large and multi-staged, while compactness, high speed, and high output have also been realized in recent years, not only has the bearing load increased, but also the magnitude and variety of exciting forces. Therefore, the role and importance of journal bearings have increased tremendous ly. In particular, for the design of rotating machines with low vibration levels and high reliability, knowledge of the exact characteristic data of bearings, and especial ly of the stiffness or spring coefficients and the damping coefficients of oil films in bearings, is essential. However, the amount of reliable data now applicable to practical design is limited. Through the activity of the Research Subcommittee on Dynamic Charac teristics of Journal Bearings and Their Applications (designated as PSC 28), estab lished and organized in June 1979 through May 1982 within the Japan Society of Mechanical Engineers (JSME), these coefficients, together with static characteris tics, have been calculated and also measured on a number of new test rigs.
"Machining dynamics: Frequency response to improved productivity" will train engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book is arranged such that the steps required to improve machining productivity through chatter avoidance and reduced surface location error (forced vibrations resulting in part geometric errors) are clearly evident. The following topics are covered in detail: modal analysis, including experimental methods, to obtain the tool point frequency response function; descriptions of turning and milling, including force modeling, time domain simulation, stability lobe diagram algorithms, and surface location error calculation for milling; and receptance coupling methods for tool point frequency response prediction, including beam theory. Numerical examples are included, as well as the MATLAB code used to develop the figures.
This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author's screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the author in 2002, is introduced in detail. Besides, the three-order screw system and its space distribution of the kinematic screws for infinite possible motions of lower mobility mechanisms are both analyzed. |
You may like...
Parallel Manipulators of Robots - Theory…
Korganbay Sagnayevich Sholanov
Hardcover
R3,616
Discovery Miles 36 160
Mechanism Design for Robotics - MEDER…
Said Zeghloul, Med Amine Laribi, …
Hardcover
R6,913
Discovery Miles 69 130
Multibody Mechatronic Systems - Papers…
Martin Pucheta, Alberto Cardona, …
Hardcover
R6,921
Discovery Miles 69 210
Applied Thermodynamics for Engineering…
T.D. Eastop, A. McConkey
Paperback
R2,444
Discovery Miles 24 440
The Magnet Motor - Making Free Energy…
Patrick Weinand
Hardcover
Proceedings of IncoME-V & CEPE Net-2020…
Dong Zhen, Dong Wang, …
Hardcover
R8,185
Discovery Miles 81 850
Turbomachinery - Fundamentals, Selection…
Marco Gambini, Michela Vellini
Hardcover
R1,400
Discovery Miles 14 000
Cable-Driven Parallel Robots…
Marc Gouttefarde, Tobias Bruckmann, …
Hardcover
R6,526
Discovery Miles 65 260
|