![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
Heat Conversion Systems develops the underlying concepts of
advanced Rankine-based absorption and compression cycles and
introduces the Building Block Approach as a general concept. The
Building Block Approach identifies all cycle configurations for a
given application to ensure that system designers have available
all important alternatives. The book features numerous examples of
advanced cycles and includes single- and multi-stage absorption
heat pumps and heat transformers and combined systems. The book
also discusses single- and multi-stage vapor compression systems
with multiple solution circuits, multiple compressors, and
cascades. Aspects of working fluid selection and their influence on
cycle options, performance evaluation, and estimating procedures
for the Coefficient of Performance (COP) are addressed. Cycle
analysis based on the Second Laws of Thermodynamics is examined.
Integral Transforms in Computational Heat and Fluid Flow is a
comprehensive volume that emphasizes the generalized integral
transform technique (G.I.T.T.) and the developments that have made
the technique a powerful computational tool of practical interest.
The book progressively demonstrates the approach through
increasingly difficult extensions and test problems. It begins with
an overview of the generalized integral transform technique in
contrast with classical analytical ideas.
"This entirely updated and enlarged Second Edition broadens the scope of the previous edition while maintaining its concise, easy-to-read style in presenting the basic principles of turbomachine theory and its application to specific devices -- providing immediately useful step-by-step procedures that show how the essentials of turbomachinery are applied in design and to predict performance. "
This volume comprises select papers presented at the International Conference on Advances in Manufacturing Technology (ICAMT 2018). It includes contributions from different researchers and practitioners working in the field of advanced manufacturing technology. This book covers diverse topics of contemporary manufacturing technology including material processes, machine tools, cutting tools, robotics and automation, manufacturing systems, optimization technologies, 3D scanning and re-engineering, and 3D printing. Computer applications in design, analysis, and simulation tools for solving manufacturing problems at various levels starting from material designs to complex manufacturing systems are also discussed. This book will be useful for students, researchers, and practitioners working in the field of manufacturing technology.
'Proceedings of the FISITA 2012 World Automotive Congress' are
selected from nearly 2,000 papers submitted to the 34th FISITA
World Automotive Congress, which is held by Society of Automotive
Engineers of China (SAE-China ) and the International Federation of
Automotive Engineering Societies (FISITA). This proceedings focus
on solutions for sustainable mobility in all areas of passenger
car, truck and bus transportation. Volume 1: Advanced Internal
Combustion Engines (I) focuses on:
This book presents the basic principles and engineering data governing the process design of indirect heat transfer fluids and systems. It focuses on the selection of systems based on common engineering criteria such as reliability and cost, and particularly on energy conservation and safety.
Based on the simulations developed in research groups over the past years, "Introduction to" "Quasi-dimensional Simulation of Spark Ignition Engines "provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines" "is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations."" Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, "Introduction to Quasi-dimensional Simulation of Spark Ignition Engines" offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines"
This book presents the latest research advances relating to machines and mechanisms. Featuring papers from the XIII International Conference on the Theory of Machines and Mechanisms (TMM 2020), held in Liberec, Czech Republic, on September 7-9, 2021, it includes a selection of the most important new results and developments. The book is divided into five parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics and control and monitoring systems of machines. This conference is traditionally held every four years under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
This book focuses on the performance and application of fluidic nozzle throats for solid rocket motors, discussing their flow details and characterization performance, as well as the influence of the particle phase on their performance. It comprehensively covers a range of fluidic nozzle throats in solid rocket motors and is richly illustrated with impressive figures and full-color photographs. It is a valuable resource for students and researchers in the fields of aeronautics, astronautics and related industries wishing to understand the fundamentals and theories of fluidic nozzle throats and engage in fluidic nozzle throat analysis and design.
Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It provides the practising engineer with many technical information of the manufacturing processes and collects essential aspects such as maximum obtainable precision, errors or reference values. Many examples of concrete calculations, problems and their solutions illustrate the material and support the learning reader. The internet addresses given in the appendix provide with a fast link to more information sources.
This book presents selected papers from the 6th International Conference on Mechanical, Manufacturing and Plant Engineering (ICMMPE 2020), held virtually via Google Meet. It highlights the latest advances in the emerging area, brings together researchers and professionals in the field and provides a valuable platform for exchanging ideas and fostering collaboration. Joining technologies could be changed to manufacturing technologies. Addressing real-world problems concerning joining technologies that are at the heart of various manufacturing sectors, the respective papers present the outcomes of the latest experimental and numerical work on problems in soldering, arc welding and solid-state joining technologies.
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own research activities, the authors provide a useful treatise on the principal concepts and practical design engineering aspects of heat transfer. The book discusses in detail various modern engineering applications, such as microchannel heat sinks, micro heat exchangers, and micro heat pipes. It covers methods that range from discrete computation to optical measurement techniques for microscale applications. The authors also present the fundamentals of nanoscale thermal phenomena in fluids. The text concludes with an entire chapter devoted to numerical examples of microscale conduction, convective heat transfer, and radiation as well as nanoscale thermal phenomena. Drawing on their hands-on experience, the authors shed light on the differences to consider while developing engineering designs related to micro- and nanoscale systems.
This book presents the proceedings of the 5th IFToMM Symposium on Mechanism Design for Robotics, MEDER 2021, held in Poitiers, France, 23-25 June 2021. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: theoretical and computational kinematics, mechanism design, experimental mechanics, mechanics of robots, control issues of mechanical systems, machine intelligence, innovative mechanisms and applications, linkages and manipulators, micro-mechanisms, dynamics of machinery and multi-body systems. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This book introduces the metal magnetic memory (MMM) technique, one of the nondestructive testing methods, and its applications in remanufacturing engineering. It discusses the advantages of MMM and how to evaluate the early damage degree of remanufacturing cores, as well as the repairing quality of remanufactured components. Various MMM signal characteristics are extracted to reflect the damage degree of remanufacturing cores, coatings and interfaces. All the theoretical models, analysis methods and testing results of MMM in this book provide guidance to control the quality of remanufactured parts and products. This book can help readers make the best use of the MMM technique in remanufacturing engineering.
This book introduces new approaches to solving optimal control problems in induction heating process applications. Optimal Control of Induction Heating Processes demonstrates how to apply and use new optimization techniques for different types of induction heating installations. Focusing on practical methods for solving real engineering optimization problems, the text features a variety of specific optimization examples for induction heater modes and designs, particularly those used in industrial applications. The book describes basic physical phenomena in induction heating and induction heating process (IHP) optimization problems as well as IHP mathematical models for practical use. It explains the fundamentals of the new exact method and the advantages it offers over other well-known methods. A sound introduction to the broad theory of optimal control, Optimal Control of Induction Heating Processes presents a clear and accessible approach to the modern design andcontrol of practical, cost-effective induction heating processes. This book is ideal for all students, production managers, engineers, designers, scientists, and users of induction heating machinery who would like to study, design, and improve processes of induction mass heating.
This book is the first monograph focusing on ellipsoidal heads, which are commonly used as an end closure of pressure vessels in chemical, petroleum, nuclear, marine, aerospace and food processing industries. It provides a comprehensive coverage of stress, failure, design and fabrication of ellipsoidal heads. This book investigates in detail buckling/plastic collapse behaviors of ellipsoidal heads using nonlinear finite element methods and experiments. Buckling/plastic collapse experiments are performed on 37 ellipsoidal heads which cover various geometric parameters, material and fabrication methods. In particular, modern measurement technologies, such as 3D laser scanning, are used in the experiments of these ellipsoidal heads including large heads with a diameter up to 5 metres. Moreover, this book presents new formulas for accurate prediction of buckling/plastic collapse pressures of ellipsoidal heads. Using elastic-plastic theory, this book proposes a new failure mechanism-based method for design of ellipsoidal heads. Compared to other methods in current codes and standards based on elastic or perfectly plastic theory, the new design method can fully develop the head's load-carrying capacity, which reduces head thickness and thus cost. Also, this book studies control on fabrication quality of ellipsoidal heads, including shape deviation, forming strain and forming temperature. It is useful as a technical reference for researchers and engineers in the fields of engineering mechanics, engineering design, manufacturing engineering and industrial engineering.
This book highlights the principles and technologies of flotation machine mainly used in mineral processing in detail. Froth flotation is one of the most important mineral processing techniques. Over 90% of the nonferrous minerals and 50% of the ferrous minerals in the world are treated using flotation: a complicated technique including procedures from chemistry, physics and multi-scale fluid mechanics. The book introduces readers to air-forced and air-induced flotation cells and discusses the various mechanical structures and working principles involved. A number of examples from industrial engineering practice are also discussed throughout the book, helping readers to better understand the technology and relevant equipment. The book is intended for researchers, professionals and graduate students in the fields of mining and mineral processing engineering.
A unique, single-source volume offering essential material on heat exchanger design In a unified approach suitable to many applications, Fundamentals of Heat Exchanger Design details an in-depth thermal and hydraulic design theory underlying two-fluid heat exchangers for steady-state operation. An overall focus is given to offering guidance on applying basic heat exchanger design concepts to the solution of industrial heat exchanger problems. Critical coverage for complex engineering design analysis features step-by-step guidelines for rating and sizing design procedures for four types of exchangers (extended surface, plate-type, regenerator, and shell-and-tube), examinations of all auxiliary calculations related to heat transfer characteristics and pressure drop calculations, and insightful material on such subjects as:
Complete with solved examples and problems clarifying important concepts and applications, Fundamentals of Heat Exchanger Design is a powerful tool for students, researchers, and engineers.
This book discusses several mechanical and material problems that are typical for gas turbine components. It discusses accelerated tests and other methods for increasing the reliability of gas turbine engines. Special attention is given to non-traditional methods for calculating the strength characteristics and longevity of the main components. This first volume focuses on the selection of materials, deformation and destruction mechanisms in connection with stationary and non-stationary loading, and types of material damage such as the thermal fatigue. Particular attention is paid to the issues of the properties of single crystal alloys, the relationship between structure and properties, the influence of technological factors and long-term operation. The characteristics of creep resistance, crack resistance, and resistance to cyclic deformation of different alloys are given.
This book offers insights relevant to modern history and epistemology of physics, mathematics and, indeed, to all the sciences and engineering disciplines emerging of 19th century. This research volume is the first of a set of three Springer books on Lazare Nicolas Marguerite Carnot's (1753-1823) remarkable work: Essay on Machines in General (Essai sur les machines en general [1783] 1786). The other two forthcoming volumes are: Principes fondamentaux de l'equilibre et du mouvement (1803) and Geometrie de position (1803). Lazare Carnot - l'organisateur de la victoire - in Essai sur le machine en general (1786) assumed that the generalization of machines was a necessity for society and its economic development. Subsequently, his new coming science applied to machines attracted considerable interest for technician, as well, already in the 1780's. With no lack in rigour, Carnot used geometric and trigonometric rather than algebraic arguments, and usually went on to explain in words what the formulae contained. His main physical- mathematical concepts were the Geometric motion and Moment of activity-concept of Work . In particular, he found the invariants of the transmission of motion (by stating the principle of the moment of the quantity of motion) and theorized the condition of the maximum efficiency of mechanical machines (i.e., principle of continuity in the transmission of power). While the core theme remains the theories and historical studies of the text, the book contains an extensive Introduction and an accurate critical English Translation - including the parallel text edition and substantive critical/explicative notes - of Essai sur les machines en general (1786). The authors offer much-needed insight into the relation between mechanics, mathematics and engineering from a conceptual, empirical and methodological, and universalis point of view. As a cutting-edge writing by leading authorities on the history of physics and mathematics, and epistemological aspects, it appeals to historians, epistemologist-philosophers and scientists (physicists, mathematicians and applied sciences and technology).
Presenting current issues in electric motor design, installation, application, and performance, this second edition serves as the most authoritative and reliable guide to electric motor utilization and assessment in the commercial and industrial sectors. Covering topics ranging from motor energy and efficiency to computer-aided design and equipment selection, this reference assists professionals in all aspects of electric motor maintenance, repair, and optimization. It has been expanded by more than 40 percent to explore the most influential technologies in the field including electronic controls, superconducting generators, recent analytical tools, new computing capabilities, and special purpose motors.
This book describes the history and development of marine power plant. Problems of arrangement, general construction and parameters of marine power plants of all types are considered. It also introduces different characteristics of each type of marine power plant, matching characteristic for diesel propulsion. The book gives a clear idea about different marine power engines, including working principle, structure and application. Readers will understand easily the power system for ships since there are a lot of illustrations and instructions for each of the equipment. This book is useful for students majoring in "marine engineering", "energy and power engineering" and other related majors. It is also useful for operators of marine institution for learning main design and operation of ship plants.
This book contains the papers of the 7th International Workshop on Medical and Service Robots (MESROB) that was planned to be held in Basel, Switzerland, in July 2020. Since the conference could not be held due to the worldwide Corona pandemic, the proceedings are published in this book and presentation of the accepted papers will be postponed to next year's conference (MESROB 2021). The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, medical treatments, medical lasers, and surgical planning and navigation. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. |
![]() ![]() You may like...
Genome Editing - The Next Step in Gene…
Toni Cathomen, Matthew Hirsch, …
Hardcover
R4,711
Discovery Miles 47 110
A Handbook of Gene and Cell Therapy
Clevio Nobrega, Liliana Mendonca, …
Hardcover
R4,676
Discovery Miles 46 760
Logic on the Track of Social Change
David Braybrooke, Bryson Brown, …
Hardcover
R1,576
Discovery Miles 15 760
Heterogeneity in Statistical Genetics…
Derek Gordon, Stephen J. Finch, …
Hardcover
R3,593
Discovery Miles 35 930
|