![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
A book for students and lecturers covering all types of automobile engine, 'Advanced Engine Technology' provides a comprehensive reference for anyone studying the way in which modern vehicle engines work, and why they are designed as they are. The author deals with the full range of engines encountered in production vehicles (petrol and diesel), in a clear and simple way.
This book focuses on the performance and application of fluidic nozzle throats for solid rocket motors, discussing their flow details and characterization performance, as well as the influence of the particle phase on their performance. It comprehensively covers a range of fluidic nozzle throats in solid rocket motors and is richly illustrated with impressive figures and full-color photographs. It is a valuable resource for students and researchers in the fields of aeronautics, astronautics and related industries wishing to understand the fundamentals and theories of fluidic nozzle throats and engage in fluidic nozzle throat analysis and design.
Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It provides the practising engineer with many technical information of the manufacturing processes and collects essential aspects such as maximum obtainable precision, errors or reference values. Many examples of concrete calculations, problems and their solutions illustrate the material and support the learning reader. The internet addresses given in the appendix provide with a fast link to more information sources.
This book presents the latest research advances relating to machines and mechanisms. Featuring papers from the XIII International Conference on the Theory of Machines and Mechanisms (TMM 2020), held in Liberec, Czech Republic, on September 7-9, 2021, it includes a selection of the most important new results and developments. The book is divided into five parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics and control and monitoring systems of machines. This conference is traditionally held every four years under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
This book presents selected papers from the 6th International Conference on Mechanical, Manufacturing and Plant Engineering (ICMMPE 2020), held virtually via Google Meet. It highlights the latest advances in the emerging area, brings together researchers and professionals in the field and provides a valuable platform for exchanging ideas and fostering collaboration. Joining technologies could be changed to manufacturing technologies. Addressing real-world problems concerning joining technologies that are at the heart of various manufacturing sectors, the respective papers present the outcomes of the latest experimental and numerical work on problems in soldering, arc welding and solid-state joining technologies.
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own research activities, the authors provide a useful treatise on the principal concepts and practical design engineering aspects of heat transfer. The book discusses in detail various modern engineering applications, such as microchannel heat sinks, micro heat exchangers, and micro heat pipes. It covers methods that range from discrete computation to optical measurement techniques for microscale applications. The authors also present the fundamentals of nanoscale thermal phenomena in fluids. The text concludes with an entire chapter devoted to numerical examples of microscale conduction, convective heat transfer, and radiation as well as nanoscale thermal phenomena. Drawing on their hands-on experience, the authors shed light on the differences to consider while developing engineering designs related to micro- and nanoscale systems.
This book presents the proceedings of the 5th IFToMM Symposium on Mechanism Design for Robotics, MEDER 2021, held in Poitiers, France, 23-25 June 2021. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: theoretical and computational kinematics, mechanism design, experimental mechanics, mechanics of robots, control issues of mechanical systems, machine intelligence, innovative mechanisms and applications, linkages and manipulators, micro-mechanisms, dynamics of machinery and multi-body systems. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This book is the first monograph focusing on ellipsoidal heads, which are commonly used as an end closure of pressure vessels in chemical, petroleum, nuclear, marine, aerospace and food processing industries. It provides a comprehensive coverage of stress, failure, design and fabrication of ellipsoidal heads. This book investigates in detail buckling/plastic collapse behaviors of ellipsoidal heads using nonlinear finite element methods and experiments. Buckling/plastic collapse experiments are performed on 37 ellipsoidal heads which cover various geometric parameters, material and fabrication methods. In particular, modern measurement technologies, such as 3D laser scanning, are used in the experiments of these ellipsoidal heads including large heads with a diameter up to 5 metres. Moreover, this book presents new formulas for accurate prediction of buckling/plastic collapse pressures of ellipsoidal heads. Using elastic-plastic theory, this book proposes a new failure mechanism-based method for design of ellipsoidal heads. Compared to other methods in current codes and standards based on elastic or perfectly plastic theory, the new design method can fully develop the head's load-carrying capacity, which reduces head thickness and thus cost. Also, this book studies control on fabrication quality of ellipsoidal heads, including shape deviation, forming strain and forming temperature. It is useful as a technical reference for researchers and engineers in the fields of engineering mechanics, engineering design, manufacturing engineering and industrial engineering.
This book introduces new approaches to solving optimal control problems in induction heating process applications. Optimal Control of Induction Heating Processes demonstrates how to apply and use new optimization techniques for different types of induction heating installations. Focusing on practical methods for solving real engineering optimization problems, the text features a variety of specific optimization examples for induction heater modes and designs, particularly those used in industrial applications. The book describes basic physical phenomena in induction heating and induction heating process (IHP) optimization problems as well as IHP mathematical models for practical use. It explains the fundamentals of the new exact method and the advantages it offers over other well-known methods. A sound introduction to the broad theory of optimal control, Optimal Control of Induction Heating Processes presents a clear and accessible approach to the modern design andcontrol of practical, cost-effective induction heating processes. This book is ideal for all students, production managers, engineers, designers, scientists, and users of induction heating machinery who would like to study, design, and improve processes of induction mass heating.
This book highlights the principles and technologies of flotation machine mainly used in mineral processing in detail. Froth flotation is one of the most important mineral processing techniques. Over 90% of the nonferrous minerals and 50% of the ferrous minerals in the world are treated using flotation: a complicated technique including procedures from chemistry, physics and multi-scale fluid mechanics. The book introduces readers to air-forced and air-induced flotation cells and discusses the various mechanical structures and working principles involved. A number of examples from industrial engineering practice are also discussed throughout the book, helping readers to better understand the technology and relevant equipment. The book is intended for researchers, professionals and graduate students in the fields of mining and mineral processing engineering.
This book offers insights relevant to modern history and epistemology of physics, mathematics and, indeed, to all the sciences and engineering disciplines emerging of 19th century. This research volume is the first of a set of three Springer books on Lazare Nicolas Marguerite Carnot's (1753-1823) remarkable work: Essay on Machines in General (Essai sur les machines en general [1783] 1786). The other two forthcoming volumes are: Principes fondamentaux de l'equilibre et du mouvement (1803) and Geometrie de position (1803). Lazare Carnot - l'organisateur de la victoire - in Essai sur le machine en general (1786) assumed that the generalization of machines was a necessity for society and its economic development. Subsequently, his new coming science applied to machines attracted considerable interest for technician, as well, already in the 1780's. With no lack in rigour, Carnot used geometric and trigonometric rather than algebraic arguments, and usually went on to explain in words what the formulae contained. His main physical- mathematical concepts were the Geometric motion and Moment of activity-concept of Work . In particular, he found the invariants of the transmission of motion (by stating the principle of the moment of the quantity of motion) and theorized the condition of the maximum efficiency of mechanical machines (i.e., principle of continuity in the transmission of power). While the core theme remains the theories and historical studies of the text, the book contains an extensive Introduction and an accurate critical English Translation - including the parallel text edition and substantive critical/explicative notes - of Essai sur les machines en general (1786). The authors offer much-needed insight into the relation between mechanics, mathematics and engineering from a conceptual, empirical and methodological, and universalis point of view. As a cutting-edge writing by leading authorities on the history of physics and mathematics, and epistemological aspects, it appeals to historians, epistemologist-philosophers and scientists (physicists, mathematicians and applied sciences and technology).
This book discusses several mechanical and material problems that are typical for gas turbine components. It discusses accelerated tests and other methods for increasing the reliability of gas turbine engines. Special attention is given to non-traditional methods for calculating the strength characteristics and longevity of the main components. This first volume focuses on the selection of materials, deformation and destruction mechanisms in connection with stationary and non-stationary loading, and types of material damage such as the thermal fatigue. Particular attention is paid to the issues of the properties of single crystal alloys, the relationship between structure and properties, the influence of technological factors and long-term operation. The characteristics of creep resistance, crack resistance, and resistance to cyclic deformation of different alloys are given.
Presenting current issues in electric motor design, installation, application, and performance, this second edition serves as the most authoritative and reliable guide to electric motor utilization and assessment in the commercial and industrial sectors. Covering topics ranging from motor energy and efficiency to computer-aided design and equipment selection, this reference assists professionals in all aspects of electric motor maintenance, repair, and optimization. It has been expanded by more than 40 percent to explore the most influential technologies in the field including electronic controls, superconducting generators, recent analytical tools, new computing capabilities, and special purpose motors.
This book includes representative research from the state-of-the-art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross-disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
This book contains the papers of the 7th International Workshop on Medical and Service Robots (MESROB) that was planned to be held in Basel, Switzerland, in July 2020. Since the conference could not be held due to the worldwide Corona pandemic, the proceedings are published in this book and presentation of the accepted papers will be postponed to next year's conference (MESROB 2021). The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, medical treatments, medical lasers, and surgical planning and navigation. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.
This book brings together investigations which combine theoretical and experimental results related to such systems as flexure hinges and compliant mechanisms for precision applications, the non-linear analytical modeling of compliant mechanisms, mechanical systems using compliance as a bipedal robot and reconfigurable tensegrity systems and micro-electro-mechanical systems (MEMS) as energy efficient micro-robots, microscale force compensation, magnetoelectric micro-sensors, acoustical actuators and the wafer bonding as a key technology for the MEMS fabrication. The volume gathers twelve contributions presented at the 5th Conference on Microactuators, Microsensors and Micromechanisms (MAMM), held in Ilmenau, Germany in November 2020. The aim of the conference was to provide a special opportunity for a know-how exchange and collaboration in various disciplines concerning systems pertaining to micro-technology. The conference was organized under the patronage of IFToMM (International Federation for the Promotion of Mechanism and Machine Science).
This book introduces the metal magnetic memory (MMM) technique, one of the nondestructive testing methods, and its applications in remanufacturing engineering. It discusses the advantages of MMM and how to evaluate the early damage degree of remanufacturing cores, as well as the repairing quality of remanufactured components. Various MMM signal characteristics are extracted to reflect the damage degree of remanufacturing cores, coatings and interfaces. All the theoretical models, analysis methods and testing results of MMM in this book provide guidance to control the quality of remanufactured parts and products. This book can help readers make the best use of the MMM technique in remanufacturing engineering.
This volume covers the fundamentals of boiler systems and gathers hard-to-find facts and observations for designing, constructing and operating industrial power plants in the United States and overseas. It contains formulas and spreadsheets outlining combustion points of natural gas, oil and solid fuel beds. It also includes a boiler operator's training guide, maintenance examples, and a checklist for troubleshooting.
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the sixth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Health Monitoring, including papers on: Novel Techniques Optical Methods, Scanning LDV Methods Photogrammetry & DIC Rotating Machinery
This book introduces the engineering application of the discrete element method (DEM), especially the simulation analysis of the typical equipment (scraper conveyor, coal silos, subsoiler) in the coal and agricultural machinery. In this book, the DEM is applied to build rigid and loose coupling model, and the kinematic effect of the bulk materials, the mechanical effect of the interaction between the bulk materials, and the mechanical equipment in the operation process of the relevant equipment are studied. On this basis, the optimization design strategy of the relevant structure is proposed. This book effectively promotes the application of DEM in engineering, analyzes the operation state, failure mechanism, and operation effect of related equipment in operation, and provides theoretical basis for the optimal design of equipment. The book is intended for undergraduate and graduate students who are interested in mechanical engineering, researchers investigating coal and agricultural machinery, and engineers working on designing related equipments.
This book presents the proceedings of the 3rd International Conference of IFToMM ITALY, held online on September 9-11, 2020. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
This book discusses condition based monitoring of rotating machines using intelligent adaptive systems. The book employs computational intelligence and fuzzy control principles to deliver a module that can adaptively monitor and optimize machine health and performance. This book covers design and performance of such systems and provides case studies and data models for fault detection and diagnosis. The contents cover everything from optimal sensor positioning to fault diagnosis. The principles laid out in this book can be applied across rotating machinery such as turbines, compressors, and aircraft engines. The adaptive fault diagnostics systems presented can be used in multiple time and safety critical applications in domains such as aerospace, automotive, deep earth and deep water exploration, and energy.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book highlights selected papers from the Mechanical Engineering track, with a focus on mechatronics and manufacturing, presented at the "Malaysian Technical Universities Conference on Engineering and Technology" (MUCET 2019). The conference brings together researchers and professionals in the fields of engineering, research and technology, providing a platform for future collaborations and the exchange of ideas.
This book presents experimental and numerical findings on reducing shock-induced separation by applying transition upstream the shock wave. The purpose is to find out how close to the shock wave the transition should be located in order to obtain favorable turbulent boundary layer interaction. The book shares findings obtained using advanced flow measurement methods and concerning e.g. the transition location, boundary layer characteristics, and the detection of shock wave configurations. It includes a number of experimental case studies and CFD simulations that offer valuable insights into the flow structure. It covers RANS/URANS methods for the experimental test section design, as well as more advanced techniques, such as LES, hybrid methods and DNS for studying the transition and shock wave interaction in detail. The experimental and numerical investigations presented here were conducted by sixteen different partners in the context of the TFAST Project. The general focus is on determining if and how it is possible to improve flow performance in comparison to laminar interaction. The book mainly addresses academics and professionals whose work involves the aerodynamics of internal and external flows, as well as experimentalists working with compressible flows. It will also be of benefit for CFD developers and users, and for students of aviation and propulsion systems alike. |
![]() ![]() You may like...
Space Operations: Inspiring Humankind's…
Helene Pasquier, Craig A. Cruzen, …
Hardcover
R6,515
Discovery Miles 65 150
X-ray Pulsar-based Navigation - Theory…
Wei Zheng, Yidi Wang
Hardcover
R2,887
Discovery Miles 28 870
Standard Seamanship for the Merchant…
Felix 1879-1939 Riesenberg
Hardcover
R1,077
Discovery Miles 10 770
Electrical Education Guide - Teacher's…
Alexander M Cagnola
Hardcover
Space, the Dormant Frontier - Changing…
Joan Johnson-Freese, Roger Handberg
Hardcover
R2,802
Discovery Miles 28 020
|