![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission > General
This book presents the proceedings of the 4th International Conference of IFToMM ITALY (IFIT), held in Naples, Italy on September 7-9, 2022. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
This book presents the proceedings of the 6th IFToMM Asian Mechanisms and Machine Science Conference (Asian MMS), held in Hanoi, Vietnam on December 15-18, 2021. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, methods, and applications of linear and rotary machines.
This book covers historical aspects and future directions of mechanical and industrial engineering. Chapters of this book include applied mechanics and design, tribology, machining, additive manufacturing and management of industrial technologies.
This book presents select proceedings of the 1st International Conference on Advances in Mechanical Engineering and Material Science (ICAMEMS 2022). It discusses about the diverse technological advancements, innovations, and achievements in the areas of mechanical engineering and material science. It also covers the developments and challenges in the field of machine design, manufacturing, thermal and fluid engineering. Important topics covered in the conference include advanced manufacturing processes, machining, product design and development, mechatronics and robotics, non-conventional energy resources, green energy and energy harvesting, tribology, materials and characterization. The book also discusses advanced research areas in material science such as smart materials, bio-materials and advanced energy materials. Given the contents, the book will be a valuable reference for students, researchers and industrialists interested in advanced research areas of mechanical engineering and material science.
To protect the Earth, China has launched its target of peaking carbon dioxide emissions by 2030, and achieving carbon neutrality by 2060 , which greatly encourages the use and development of renewable energy. Supercritical CO2 power cycle is a promising technology and the radial inflow turbine is the most important component of it, whose design and optimisation are considered as great challenges. This book introduces simulation tools and methods for supercritical CO2 radial inflow turbine, including a high fidelity quasi-one-dimensional design procedure, a non-ideal compressible fluid dynamics Riemann solver within open-source CFD software OpenFOAM framework, and a multi-objective Nelder-Mead geometry optimiser. Enhanced one-dimensional loss models are presented for providing a new insight towards the preliminary design of the supercritical CO2 radial inflow turbine. Since the flow phenomena within the blade channels are complex, involving fluid flow, shock wave transmission and boundary layer separation, only employing the ideal gas model is inadequate to predict the performance of the turbine. Thus, a non-ideal compressible fluid dynamics Riemann solver based on OpenFOAM library is developed. This book addresses the issues related to the turbine design and blade optimization and provides leading techniques. Hence, this book is of great value for the readers working on the supercritical CO2 radial inflow turbine and understanding the knowledge of CFD and turbomachinery.
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.
This volume gathers the latest advances, innovations and applications in the field of condition monitoring, plant maintenance and reliability, as presented by leading international researchers and engineers at the 5th International Conference on Maintenance Engineering and the 2020 Annual Conference of the Centre for Efficiency and Performance Engineering Network (IncoME-V & CEPE Net-2020), held in Zhuhai, China on October 23-25, 2020. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
Among various mechanical devices built to produce power for industrial and societal needs, gas turbines offer a number of significant advantages. The sliding components in reciprocating engines cause considerable vibrations. Hydroelectric power from turbines using water is a great resource, but potential sites are limited. Steam power plants require expensive steam generating equipment of large bulk, and installation may stretch over lengthy time periods. In contrast, gas turbines operate smoothly with low vibrations, are compact in size, can be started rapidly from rest and may be installed fairly quickly. Gas turbines offer even greater benefits in the aviation arena. Turbojet and multi-rotor turbofan engines have no competition for powering larger aircrafts at faster speeds. Applications in other fields abound. An outstanding example is the aeroderivative gas turbines on offshore oil platforms, where their lighter weight, smaller footprint and ability to burn many different types of fuel make it a clear choice. This book is written to meet the needs of students in engineering colleges and practicing engineers. The material has been specifically tailored for college undergraduate and graduate level design engineering of rotating machine courses. In keeping with its mostly introductory nature, the primary focus is on thermodynamic cycle design and practical mechanical design features. Where possible, electronic spreadsheet type of calculations is used in example problems to calculate flow characteristics and related cycle design parameters. The book focuses on: Fuel consumption, power output and exhaust gas emissions State-of-the-art in the thermal and fluid flow technologies for design of single and multi-rotor gas turbines Methods to enhance performance through creative component designs Analysis of complex problems ranging from compressor stall to optimizing operation from partial to full load.
This book presents interdisciplinary, cutting-edge and creative applications of graph theory and modeling in science, technology, architecture and art. Topics are divided into three parts: the first one examines mechanical problems related to gears, planetary gears and engineering installations; the second one explores graph-based methods applied to medical analyses as well as biological and chemical modeling; and the third part includes various topics e.g. drama analysis, aiding of design activities and network visualisation. The authors represent several countries in Europe and America, and their contributions show how different, useful and fruitful the utilization of graphs in modelling of engineering systems can be. The book has been designed to serve readers interested in the subject of graph modelling and those with expertise in related areas, as well as members of the worldwide community of graph modelers.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This volume gathers the latest advances, innovations and applications in the field of vibration and technology of machinery, as presented by leading international researchers and engineers at the XV International Conference on Vibration Engineering and Technology of Machinery (VETOMAC), held in Curitiba, Brazil on November 10-15, 2019. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book introduces the metal magnetic memory (MMM) technique, one of the nondestructive testing methods, and its applications in remanufacturing engineering. It discusses the advantages of MMM and how to evaluate the early damage degree of remanufacturing cores, as well as the repairing quality of remanufactured components. Various MMM signal characteristics are extracted to reflect the damage degree of remanufacturing cores, coatings and interfaces. All the theoretical models, analysis methods and testing results of MMM in this book provide guidance to control the quality of remanufactured parts and products. This book can help readers make the best use of the MMM technique in remanufacturing engineering.
This book presents the select proceedings of the National Conference on Research and Developments in Material Processing, Modelling and Characterization (RDMPMC 2020). It covers the recent advances in manufacturing processes. The book explains various manufacturing process technologies based on surface modification, welding, mechanical deformation, and heat treatment. It also covers the topics such as microstructural characterization and properties evaluation, corrosion, and tribology. The book will be useful to researchers, students and professionals working in areas related to materials processing and characterization.
During the last decade, rapid advances have been made in the area of flow analysis in the components of gas turbine engines. Improving the design methods of turbomachine blade rows and under standing of the flow phenomena through them, has become one of the major research topics for aE'rodynamists. This increase of research efforts is due to the need of reducing the weight and fuel consumption of turbojet engines for the same thrust levels. One way of achieving this is to design more efficient components working at high local velocities. Design efforts can lead to desired results only if the details of flow through the blade rows are understood. It is also known that for aircraft propulsion systems development, time and cost can be reduced significantly if the perf ormance can be predicted with conf idence and enough precision. This. generally iK: eds sophisticated two or three dimensional computer codes that can give enough information for design and performance prediction. In the recent years, designers also started to use these sophisticated codes more and more with confidence, in connection with computer aided design and manufacturing techniques. On the other hand, the modelling and solution of flow and the meast"
This book presents a selection of preliminary sizing procedures for turbomachinery. Applicable to both conventional and non-conventional fluids, these procedures enable users to optimize the kinematics, thermodynamics and geometry of the turbomachinery (in the preliminary design phase) using geometric correlations and losses models; to accurately predict the efficiency of turbomachinery - in most cases, in excellent agreement with CFD calculations; and to consistently analyze all turbomachines (axial and radial turbines, axial and centrifugal compressors, centrifugal pumps). The book is intended for bachelor's and master's students in industrial, mechanical and energy engineering, as well as researchers and professionals in the energy systems and turbomachinery sectors, guiding them step by step through the first sizing of turbomachines and the verification of the technological feasibility of turbomachines designed for new conversion systems operating with unconventional fluids.
This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.
This handbook deals with the vast subject of thermal management of engines and vehicles by applying the state of the art research to diesel and natural gas engines. The contributions from global experts focus on management, generation, and retention of heat in after-treatment and exhaust systems for light-off of NOx, PM, and PN catalysts during cold start and city cycles as well as operation at ultralow temperatures. This book will be of great interest to those in academia and industry involved in the design and development of advanced diesel and CNG engines satisfying the current and future emission standards.
This monograph is based on methanol as a fuel for transportation sector, specifically for compression ignition (CI) engines. The contents present examples of utilization of methanol as a fuel for CI engines in different modes of transportation such as railroad, personal vehicles or heavy duty road transportation. The book also focuses on effect of methanol on combustion and performance characteristics of the engine. The effect of methanol on exhaust emission production, prediction and control is also discussed. It also discusses current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. Part of the chapters are based on review of state-of-the-art while other chapters are dedicated to an original research. This volume will be a useful guide to professionals and academics involved in alternative fuels, compression ignition engines, and environmental research.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS diversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
This book offers insights relevant to modern history and epistemology of physics, mathematics and, indeed, to all the sciences and engineering disciplines emerging of 19th century. This research volume is the first of a set of three Springer books on Lazare Nicolas Marguerite Carnot's (1753-1823) remarkable work: Essay on Machines in General (Essai sur les machines en general [1783] 1786). The other two forthcoming volumes are: Principes fondamentaux de l'equilibre et du mouvement (1803) and Geometrie de position (1803). Lazare Carnot - l'organisateur de la victoire - in Essai sur le machine en general (1786) assumed that the generalization of machines was a necessity for society and its economic development. Subsequently, his new coming science applied to machines attracted considerable interest for technician, as well, already in the 1780's. With no lack in rigour, Carnot used geometric and trigonometric rather than algebraic arguments, and usually went on to explain in words what the formulae contained. His main physical- mathematical concepts were the Geometric motion and Moment of activity-concept of Work . In particular, he found the invariants of the transmission of motion (by stating the principle of the moment of the quantity of motion) and theorized the condition of the maximum efficiency of mechanical machines (i.e., principle of continuity in the transmission of power). While the core theme remains the theories and historical studies of the text, the book contains an extensive Introduction and an accurate critical English Translation - including the parallel text edition and substantive critical/explicative notes - of Essai sur les machines en general (1786). The authors offer much-needed insight into the relation between mechanics, mathematics and engineering from a conceptual, empirical and methodological, and universalis point of view. As a cutting-edge writing by leading authorities on the history of physics and mathematics, and epistemological aspects, it appeals to historians, epistemologist-philosophers and scientists (physicists, mathematicians and applied sciences and technology).
This book gathers the latest advances, innovations, and applications in the field of machine science and mechanical engineering, as presented by international researchers and engineers at the 11th International Conference on Machine and Industrial Design in Mechanical Engineering (KOD), held in Novi Sad, Serbia on June 10-12, 2021. It covers topics such as mechanical and graphical engineering, industrial design and shaping, product development and management, complexity, and system design. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
This book presents select proceedings of the International Conference on Recent Advances in Mechanical Engineering Research and Development (ICRAMERD 21). It covers the latest research trends in various branches of mechanical engineering. The topics covered include materials engineering, industrial system engineering, manufacturing systems engineering, automotive engineering, thermal systems, smart composite materials, manufacturing processes, industrial automation, and energy system. The book will be a valuable reference for beginners, researchers, engineers, and industry professionals working in the various fields of mechanical engineering.
This book gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. The contents reflect the outcomes of the activities of RAAD (International Conference on Robotics in Alpe-Adria-Danube Region) in 2020. |
You may like...
Recent Advances in CFD for Wind and…
Esteban Ferrer, Adeline Montlaur
Hardcover
R2,653
Discovery Miles 26 530
|