![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
The shock waves produced by meteorite impacts give rise not only to the obvious craters seen on planets and their satellites but also to subtle effects seen only with chemical and petrographic examination of the shocked material. Shock waves in the interplanetary and interstellar medium play an important role in the formation of stars and planets, including the solar system. They also produce important chemical effects in interstellar clouds of dust and gas, --- including the production of rather complex organic molecules. This volume is concerned primarily with the chemical and physical effects of shock waves on typical Earth and planetary solid materials. The emphasis is on comparing naturally occurring materials with similar materials produced by shock compression in the laboratory. Such comparisons can provide clues about the environment and events that produced the natural materials. The chapters in the book deal with three main topics: * methods used to investigate the effects of shock on recovered minerals and rocks * effects of shock on carbon and hydrocarbons * subtle effects of shocks on geochemistry, such as shock induced redistribution of lead isotopes, the effect of the great impact at the end of the Cretaceous on atmospheric SO2 and CO2, and effect of shocks on ices.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
This is the first book which deals with the economics of diamonds, specifically with the determinants of diamond prices. The period of analysis, 1978-1983, was chosen in order to shed light on the dramatic drop in diamond prices. The dominant variables causing this drop were the varying price of gold and fluctuating interest rates. Khoury helps the investor in making long-range decisions about investing in diamonds and deciding on the form the investment should take. He warns of the importance to understand the sensitivities of the market and the factors which must be taken into consideration before commitments to an investment in diamonds are made. The book includes: a quick review of the characteristics of diamonds, the financial performance of DeBeers in a declining market, the economic structure of the diamond industry, the method for exercising economic control over the diamond market, the economic variables influencing diamond prices, and the modeling of diamond prices and the testing of the model using advanced statistical methods.
The book will include contributions of the state of the art of quartz raw materials (deposits and properties) and their analytics. The chapters are presented by leading scientists in the quartz field. The presentations cover the main interrelations between genesis of quartz - formation of specific properties - analytics - industrial applications of SiO2 raw materials.
These proceedings comprise the peer-reviewed contributions submitted to the 11th International Congress for Applied Mineralogy (ICAM) held July 5-10, 2013, at the Southwest University of Science and Technology (SWUST) in Mianyang, China. The biennial ICAM is the most important gathering of applied mineralogists, organized every other year by the ICAM-Council. The multidisciplinary research presented in this book will be of interest to scientists and professionals dealing with topics like environmental and medical mineralogy; industrial minerals; bio-minerals and biomaterials; advanced materials; process mineralogy; mining and metallurgy; cultural heritage; the interaction of minerals with microorganisms; and solid waste treatment and recycling, including genetic mineralogy. "The field of applied mineralogy has been able to match society's pace by continuously reinventing itself, quickly adopting new technologies and instrumentation as they became available and putting them to work for the service of mankind living in a world that heavily relies on minerals. Over the past few decades, applied mineralogy has evolved into a cutting- edge discipline that leads the way for science, engineering and research and development to benefit society. Contrary to popular belief, mineral resources are limited, and we have an obligation to our heirs to use them responsibly." Dr. Maarten A.T.M. Broekmans Post-President ICAM Council
This book provides two state-of-the-art quantitative techniques to determine ultra-trace rare earth elements (REEs) in natural carbonates using solution nebulization-inductively coupled plasma mass spectrometry (SN-ICPMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) with respective applications were presented in this dissertation. These techniques were applied to natural carbonates, including corals and stalagmites, to understand volcano eruptions and the impacts on modern biosystem and paleoclimate regimes. In the first SN-ICPMS protocol, direct measurements for femtogram quantity carbonate samples without chemical separation steps can offer accurate and high-precision analysis (+/-1.9-6.5%, 2 ) with a high sample throughput of 8-10 samples/hr routinely. Application to modern Porites corals collected from South China Sea region, the anomalies of REE contents and Al/Ca ratios associated with micro-domain images, register modern coral reefs could be exacerbated by volcanic eruptions. In the second protocol, a high-sensitivity quantitative open-cell LA-ICPMS technique has been established to allow direct sampling on stalagmite surface in the atmospheric air. This technique improved limits of detection down to sub-ng/g range and promises analyses of carbonate REE profiles at the single digit parts-per-billion (ppb) levels. Application to a 15-cm stalagmite collected from East Timor reveals two peaks of REE contents by at least one order of magnitude, possibly due to volcanic ash preserved in stalagmite. Both improved SN-ICPMS and LA-ICPMS techniques highlight the high-sensitivity and high-temporal-resolution carbonate REE analyses for corals and stalagmites, with great potential to other natural carbonates such as travertine, tufa, and flowstone, benefit our understanding of paleoclimatic and paleoenvironmental dynamics.
Over the past decade the scientific activities of the Joint Global Ocean Flux Study (JGOFS), which focuses on the role of the oceans in controlling climate change via the transport and storage of greenhouse gases and organic matter, have led to an increased interest in the study of the biogeochemistry of organic matter. There is also a growing interest in global climate fluctuations. This, and the need for a precise assessment of the dynamics of carbon and other bio-elements, has led to a demand for an improved understanding of biogeochemical processes and the chemical characteristics of both particulate and dissolved organic matter in the ocean. A large amount of proxy data has been published describing the changes of the oceanic environment, but qualitative and quantitative estimates of the vertical flux of (proxy) organic compounds have not been well documented. There is thus an urgent need to pursue this line of study and, to this end, this book starts with several papers dealing with the primary production of organic matter in the upper ocean. Thereafter, the book goes on to follow the flux and characterization of particulate organic matter, discussed in relation to the primary production in the euphotic zone and resuspension in the deep waters, including the vertical flux of proxy organic compounds. It goes on to explain the decomposition and transformation of organic matter in the ocean environment due to photochemical and biological agents, and the reactivity of bulk and specific organic compounds, including the air-sea interaction of biogenic gases. The 22 papers in the book reflect the interests of JGOFS and will thus serve as a valuable reference source for future biogeochemical investigations of both bio-elements and organic matter in seawater, clarifying the role of the ocean in global climate change.
As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry.
What happens when a chemical is released into the environment? It diffuses, disperses, adsorbs, reacts, and/or changes state. To predict and analyze this process, the mathematics of diffusion is applied to lakes, rivers, groundwater, the atmosphere, the oceans, and transport between these media. A sustainable world requires a deep understanding of the transport of chemicals through the environment and how to address and harness this process. This volume presents a succinct and in-depth introduction to this critical topic. Featuring authoritative, peer-reviewed articles from the Encyclopedia of Sustainability Science and Technology, Transport and Fate of Chemicals in the Environment represents an essential one-stop reference for an audience of researchers, undergraduate and graduate students, and industry professionals.
This book covers the distribution, hydrochemistry and geophysics of the naturally occurring stable isotopes namely: hydrogen, oxygen and radioactive tritium, carbon and other cosmogenic and radiogenic isotopes of the uranium-thorium series, in the oceans and in atmosphere, the earth's surface and ground water. The use of environmental isotopes in the three main areas of natural waters is discussed: origin, dynamics and residence time in natural reservoirs. The origin of the hydrosphere is examined in the light of isotopic, new cosmochemical and recent theoretical results. The book will be of interest to scientists and researchers who use environmental isotopes in solving scientific and practical problems in hydrology, hydrogeology, oceanography, meteorology, hydrogeochemistry and cosmochemistry. Lecturers, students and postgraduates in these fields will also find it useful.
Large areas of crops are now grown under water-stressed conditions on non-irrigated and under limited irrigation in semi-arid and arid regions. In the future, this area of water-stressed crops will increase as a result of increasing competition from other water users, declining ground water levels, and the bringing into production of fragile lands that have low water-holding capacity, such as sandy desert soil. Consequently, strategies and practices to increase total yields and efficient water use must be improved. Following the introductory material and keynotes, this book is divided into four parts. Part I covers soil water management, Part II deals with model approaches to evaluate the soil-water-atmosphere interactions, Part III treats water saving techniques through soil conditioning, and Part IV discusses case studies of water management systems. "Water Saving Techniques for Plant Growth" thus represents a general account of interest and activities of the various scientific disciplines which are concerned in deseert encroachment as part of global change.
Chlorinated paraffins are one of the last classes of chlorinated compounds that are still being produced worldwide and used in high quantities in many applications. They are particularly used in cutting oils in the metal industry, but also as lubricants, plasticizers, flame retardants and as additives in adhesives, rubber, paints and sealants. This volume covers the state-of-the-art of methods for the synthesis and analysis of chlorinated paraffins. Experts in the field provide an overview of their worldwide occurrence and utilization and describe their toxicological properties. International regulations and production volumes are presented as well as an example of a risk assessment study that was carried out in Japan. This book is a valuable and comprehensive source of information for environmental scientists interested in the occurrence and toxicology of chlorinated paraffins and for authorities and producers.
This volume synthesizes the relevant data that is fundamental to our understanding of trace metal biogeochemistry and the ecology of biological communities of deep-sea vent systems. It presents the combined results of biological and geochemical research and analyzes the microdistribution of animals and the spatial structure of vent communities. Careful consideration is given to the export of iron and other trace metals from hydrothermal vents. The environmental conditions to be found in deep-sea hydrothermal community habitats, along with the trace metal behavior in biotope water are characterized and the sources and forms of trace metals taken up by dominant hydrothermal vent animals are discussed. Special attention is paid to the poorly investigated deep biosphere of the sub-seafloor igneous crust. The book is illustrated with a wealth of exceptional deep-sea photos taken by the manned submersible "Mir", and a dedicated chapter focuses on the role of deep manned submersibles in ocean research. The book will be of interest to researchers and students in the fields of oceanography, geochemistry, biology, the environmental sciences and marine ecology.
This book is a brief summary of the course of lectures in Geochemistry for undergraduate and graduate students from other than Geological Departments (chemists, biologists, ecologists and naturalists). It describes the Earth's structure and some geological processes. The modern geochemical concepts take proper account of global geological processes and the influence of Cosmos. They are based on the laws and approaches of equilibrium and non-equilibrium thermodynamics. The cycles of energy and chemical elements within the Earth are interrelated with the global geochemical cycle. In addition to the traditional Geochemistry course, this book offers Geochemistry of microorganisms, Geochemistry of dispersed systems, Geochemistry of cryogenesis, and Geochemistry of cryptobiosphere. Features: Provides the reader with a general idea of the Earth's chemical life and its related global geological events Offers a concise and clear description of the modern concepts in Geochemistry, including new directions such as Geochemistry of Cryogenesis, Geochemistry of Disperse Systems, Geochemistry of Microorganisms, and Geochemistry of Cryptobiosphere Implies a wide application of the thermodynamic approach. Useful for students who, though lacking in geology basics, are experienced in chemistry and biology
The research papers in this book present current knowledge of the sources, pathways, behavior, and effects of trace elements in soils, waters, plants, and animals. It is of interest to a variety of readers, including public health and environmental professionals, consultants, and academicians.
and used in munitions. Rather the requirements for the agent's military effects took precedence. In addition, the interaction among the political, technical, and legal challenges connected with the known or possible risks posed by CW agents is complex and sometimes not well understood. This is usually because technical considerations, when acted on, are almost invariably informed by political ones, such as various legal requirements. The book contains nine chapters covering different aspects of the research on environmental consequences of war and its aftermath and covers in one additional chapter more general issues such as prevention of war and its environmental c- sequences, the legal, political, and technical background to selected environmental and human health effects of CW agents, and the atmospheric transport and depo- tion of persistent organic pollutants under warfare conditions to more specific ones related to two main tragic examples: the war in the Balkans and the Gulf War. Aspects of the war in the Balkans cover contamination by heavy metals in Serbian national parks, the impact of NATO strikes on the Danube river basin, and the problems associated with transuranium elements. The Gulf War in Kuwait covers other problems related to the impact of oil contamination, the impact on grou- water resources, and the soil damage of ground fortifications among other envir- mental and health problems.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
Hydrogeology of Crystalline Rocks deals with deep groundwater in the granite and gneiss basement of the continents. It has become evident during the past years that highly mineralized water is present in an interconnected fracture network of the basement. Thus, the upper part of the crust of the continents can be viewed as an aquifer and investigated with tools common in hydrogeology. This book presents accounts on water-conducting features of crystalline rocks and summarizes the hydraulic properties of the basement. The volume includes reviews, new data and research on the often remarkable chemical composition of deep groundwater. Microbial processes in the deep basement aquifer are probably more important than previously thought. Two contributions focus on this recent extension of research of the biosphere to greater depth in the Earth. This book represents the first multidisciplinary and integrated account of deep groundwater hydrology in crystalline basement. It is of interest to hydrologists and hydrogeologists working with water in crystalline rocks, but also to solid earth geophysicists, geochemists and petrologists with an interest in fluids in the crust. Scientists involved in nuclear waste disposal programs and geothermal energy development will find a wealth of stimulating ideas in this volume.
The molecular mechanisms underlying the fact that a crystal can
take a variety of external forms is something we have come to
understand only in the last few decades. This is due to recent
developments in theoretical and experimental investigations of
crystal growth mechanisms.
A comprehensive reference handbook on the important aspects of trace elements in the land environment. Each chapter addresses a particular element and gives a general introduction to their role in the environment, where they come from, and their biogeochemical cycles. In addition to a complete updating of each of the element chapters, this new edition has new chapters devoted to aluminum and iron, soil contamination, remediation and trace elements in aquatic ecosystems. In short, an essential resource for environmental scientists and chemists, regulators and policy makers.
Properties and Applications of Diamond provides a unique consolidation of all useful information, as well as a comprehensive survey of literature. No other book covers this topical field with such breadth and clarity, making it both a fundamental introduction and an invaluable on-going reference. '..very readable and has value for both the expert and the newcomer' - INDUSTRIAL DIAMOND REVIEW 'An excellent source of information for any researcher, student or industrial user' - CHOICE '..lucidly written, effectively illustrated..carefully referenced and logically presented' - AUSTRALIAN GEMMOLOGIST 'It is unique amongst other books of this type' - MATERIALS FORUM
Natural saline water, waste water, and irrigation return flow endanger the groundwater aquifers in the Rift. In the long run this will ruin the socio-economic backbone of the settlements in the area. Sustainability of the water resources will only be achieved when the process of water replenishment and its underground flow is understood and water extraction is regionally controlled. Rare earth element and spider patterns are presented as new tools for studying the hydrology. Progress in 3-D modelling of groundwater flow proved successfully the impact of pumping on the surroundings of wells and overexploitation of aquifers.
This book is a state-of-the-art review of the physical, chemical and mineralogical properties of anthropogenic soils, their genesis morphology and classification, geocultural setting, and strategies for reclamation, revitalization, use and management.
Volume 16 of Advances in Microbial Ecology has a difficult history. Nearly halfway through its completion, Gwynfryn Jones had to resign as managing edi tor for health reasons, and he asked me to take over. I want to thank Gwyn for his dedicated work in this publication series, and wish him all the best for the future. After the change in editorship, some authors had to be encouraged on rather short notice to provide their chapters in order to make appearance of this volume possible within a reasonable period of time. Nonetheless, I think that the articles we present with this volume represent an enjoyable collection of up-to-date con tributions to microbial ecology. In my own understanding, microbial ecology com prises the elucidation of microbial activities in natural or semi natural environ ments, including physiology, biochemistry, population dynamics, and interactions with all the biotic and abiotic environmental conditions microbes encounter. This comprises studies on single organisms in defined cultures in an ecological per spective, the analysis of microbial activities in complex environments, as well as the development of concepts for the interactions of microorganisms with the world in which they live. Last but not least, microbial ecology is not an exotic science studied exclusively in remote places untouched by human beings."
An introduction to structure determination by x-ray crystallography, primarily for final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory postgraduate work in this area of crystallography. This substantially revised edition (2nd, 1985) adds a chapter o |
![]() ![]() You may like...
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
Creative Environments - Issues of…
Andrzej P. Wierzbicki, Yoshiteru Nakamori
Hardcover
R4,447
Discovery Miles 44 470
|