![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
This book focuses on the metallogeny and main tectonic events of the North China Craton from early Precambrian to Phanerozoic. It covers the Archean crustal growth, Paleoproterozoic rifting-subduction-collision processes, Great Oxidation Event, Meso-Neoproterozoic multiple rifting, Phanerozoic reworking of the North China Craton, as well as metallogeny related to above different processes. The North China Craton is one of the oldest cratons in the world. It has experienced a complex geological evolution since the early Precambrian, and carries important records of secular changes in tectonics and metallogeny. It provides a systematic review and new results on the growth and evolution of the North China Craton and metallogeny. It will be of broad interest to the earth scientists working in the fields of economic geology, geochemistry, and tectonics of the North China Craton and eastern Asian.
Teide Volcano has many different meanings: For the Guanche aborigines, who endured several of its eruptions, it was Echeide (Hell). Early navigators had in Teide, a lifesaving widely visible landmark that was towering over the clouds. For the first explorers, Teide was a challenging and dangerous climb, since it was thought that Teide's peak was so high that from its summit the sun was too close and far too hot to survive. Teide was considered the highest mountain in the world at that time and measuring its height precisely was a great undertaking and at the time of global scientific significance. For von Buch, von Humboldt, Lyell and other great 18th and19th century naturalists, Teide helped to shape a new and now increasingly 'volcanic' picture, where the origin of volcanic rocks (from solidified magma) slowly casted aside Neptunism and removed some of the last barriers for the development of modern Geology and Volcanology as the sciences we know today. For the present day population of Tenerife, living on top of the world's third tallest volcanic structure on the planet, Teide has actually become "Padre Teide", a fatherly protector and an emblematic icon of Tenerife, not to say of the Canaries as a whole. The UNESCO acknowledged this iconic and complex volcano, as "of global importance in providing evidence of the geological processes that underpin the evolution of oceanic islands". Today, 'Teide National Park' boasts 4 Million annual visitors including many 'volcano spotters' and is a spectacular natural environment which most keep as an impression to treasure and to never forget. For us, the editors of this book, Teide is all of the above; a 'hell of a job', a navigation point on cloudy days, a challenge beyond imagination, a breakthrough in our understanding of oceanic volcanism that has shaped our way of thinking about volcanoes, and lastly, Teide provides us with a reference point from where to start exploring other oceanic volcanoes in the Canaries and beyond. Here we have compiled the different aspects and the current understanding of this natural wonder.
Subject of the book is Uranium and its migration in aquatic environments. The following subjects are emphasised: Uranium mining, Phosphate mining, mine closure and remediation, Uranium in groundwater and in bedrock, biogeochemistry of Uranium, environmental behavior, and modeling. Particular results from the leading edge of international research are presented.
The aim of this book is to unlock the power of the freeware R language to advanced university students and researchers dealing with whole-rock geochemistry of (meta-) igneous rocks. The first part covers data input/output, calculation of commonly used indexes and plotting in R. The core of the book then focusses on the presentation and practical implementations of modelling techniques used for fingerprinting processes such as partial melting, fractional crystallization, binary mixing or AFC using major-, trace-element and radiogenic isotope data. The reader will be given a firm theoretical basis for forward/reverse modelling, followed by exercises dealing with typical problems likely to be encountered in real life, and their solutions using R. The concluding sections demonstrate, using practical examples, how a researcher can proceed in developing a realistic model simulating natural systems. The appendices outline the fundamentals of the R language and provide a quick introduction to the open-source R-package GCDkit for interpretation of whole-rock geochemical data from igneous and metamorphic rocks.
International Kimberlite Conferences (IKCs) are special events that are held across the world once in four to five years. IKC is the confluence platform for academicians, scientists and industrial personnel concerned with diamond exploration and exploitation, petrology, geochemistry, geochronology, geophysics and origin of the primary diamond host rocks and their entrained xenoliths and xenocrysts (including diamond) to get together and deliberate on new advances in research made in the intervening years. Ever since the organization of first IKC in 1973 and its tremendous success, the entire geological world eagerly look forward to subsequent such conferences with great enthusiasm and excitement. The scientific emanations from IKCs continue to make significant impact on our understanding of the composition, nature and evolution of the planet we live on. The previous conferences were held at Cape Town (1973), Santa Fe, New Mexico (1977), Clermont-Ferrand, France, (1982). Perth, Western Australia (1987), Araxa, Brazil (1991), Novosibirsk, Russia (1995), Cape Town (1998), Victoria, Canada (2003) and Frankfurt, Germany (2008). The tenth IKC was held at Bangalore, India between 5th and 11th February 2012. The conference was organized by the Geological Society of India in association with the government organizations, academic institutions and Indian diamond mining companies. About 300 delegates from 36 countries attended the conference and 224 papers were presented. The papers include 78 oral presentations and 146 poster presentations on following topics: Kimberlite geology, origin, evolution and emplacement of kimberlites and related rocks, petrology and geochemistry of metasomatised lithospheric mantle magmas, diamond exploration, cratonic roots, diamonds, diamond mining and sustainable developments and policies and governance of diamond exploration. Pre- and post-conference field trips were organized to (i) the diamond bearing kimberlites of Dharwar Craton in South India, (ii) lamproites of Bundelkhand Craton in northern India and (iii) diamond cutting and polishing industry of Surat, Gujarat in western India. A series of social and cultural programmes depicting cultural diversity of India were organized during the conference. The Kimberlite fraternity enjoyed yet another socially and scientifically successful conference.
International Kimberlite Conferences (IKCs) are special events that are held across the world once in four to five years. IKC is the confluence platform for academicians, scientists and industrial personnel concerned with diamond exploration and exploitation, petrology, geochemistry, geochronology, geophysics and origin of the primary diamond host rocks and their entrained xenoliths and xenocrysts (including diamond) to get together and deliberate on new advances in research made in the intervening years. Ever since the organization of first IKC in 1973 and its tremendous success, the entire geological world eagerly look forward to subsequent such conferences with great enthusiasm and excitement. The scientific emanations from IKCs continue to make significant impact on our understanding of the composition, nature and evolution of the planet we live on. The previous conferences were held at Cape Town (1973), Santa Fe, New Mexico (1977), Clermont-Ferrand, France, (1982), Perth, Western Australia (1987), Araxa, Brazil (1991), Novosibirsk, Russia (1995), Cape Town (1998), Victoria, Canada (2003) and Frankfurt, Germany (2008). The 10th IKC was held at Bangalore, India between 5th and 11th February 2012. The conference was organized by the Geological Society of India in association with the government organizations, academic institutions and Indian diamond mining companies. About 300 delegates from 36 countries attended the conference and 224 papers were presented. The papers include 78 oral presentations and 146 poster presentations on following topics: Kimberlite geology, origin, evolution and emplacement of kimberlites and related rocks, petrology and geochemistry of metasomatised lithospheric mantle magmas, diamond exploration, cratonic roots, diamonds, diamond mining and sustainable developments and policies and governance of diamond exploration. Pre- and post-conference field trips were organized to (i) the diamond bearing kimberlites of Dharwar Craton in South India, (ii) lamproites of Bundelkhand Craton in northern India and (iii) diamond cutting and polishing industry of Surat, Gujarat in western India. A series of social and cultural programmes depicting cultural diversity of India were organized during the conference. The Kimberlite fraternity enjoyed yet another socially and scientifically successful conference.
These proceedings comprise the peer-reviewed contributions submitted to the 11th International Congress for Applied Mineralogy (ICAM) held July 5-10, 2013, at the Southwest University of Science and Technology (SWUST) in Mianyang, China. The biennial ICAM is the most important gathering of applied mineralogists, organized every other year by the ICAM-Council. The multidisciplinary research presented in this book will be of interest to scientists and professionals dealing with topics like environmental and medical mineralogy; industrial minerals; bio-minerals and biomaterials; advanced materials; process mineralogy; mining and metallurgy; cultural heritage; the interaction of minerals with microorganisms; and solid waste treatment and recycling, including genetic mineralogy. "The field of applied mineralogy has been able to match society's pace by continuously reinventing itself, quickly adopting new technologies and instrumentation as they became available and putting them to work for the service of mankind living in a world that heavily relies on minerals. Over the past few decades, applied mineralogy has evolved into a cutting- edge discipline that leads the way for science, engineering and research and development to benefit society. Contrary to popular belief, mineral resources are limited, and we have an obligation to our heirs to use them responsibly." Dr. Maarten A.T.M. Broekmans Post-President ICAM Council
This book is written for researchers and students interested in the function and role of chemical elements in biological or environmental systems. Experts have long known that the Periodic System of Elements (PSE) provides only an inadequate chemical description of elements of biological, environmental or medicinal importance. This book explores the notion of a Biological System of the Elements (BSE) established on accurate and precise multi-element data, including evolutionary aspects, representative sampling procedures, inter-element relationships, the physiological function of elements and uptake mechanisms. The book further explores the concept Stoichiometric Network Analysis (SNA) to analyze the biological roles of chemical species. Also discussed is the idea of ecotoxicological identity cards which give a first-hand description of properties relevant for biological and toxicological features of a certain chemical element and its geo biochemically plausible speciation form. The focus of this book goes beyond both classical bioinorganic chemistry and toxicology.
This study describes the fundamentals of assessing the vulnerability of coral islands, as well as environmental management and resource exploitation. Using seabird subfossils, such as bones, guano, eggshells etc., which have been well preserved on the Xisha Islands in the South China Sea, the author identifies the influences of climate change and human activity on seabird populations and diets. Understanding the past is of great importance for predicting the future, and seabird subfossils provide valuable information, which can be used to study changes in seabird ecology, paleoceanography and palaeoclimate. Furthermore, this study proposes examining the biogeochemical cycling of some elements present in the geosphere, hydrosphere, biosphere and atmosphere. Dr. Liqiang Xu works at the Hefei University of Technology, China.
The various safety organizations working on drinking water all warn about unhealthy constituents, as well as elements that can cause corrosion or scaling on pipes and installations. However, drinking water may also provide a substantial portion of the daily mineral intake, especially for the elderly and children, or those at risk of deficiencies due to unhealthy eating habits or starvation. Thus, a holistic approach to drinking water is presented in this book and the scope is extended from standards for undesirable substances to the basic mineral composition of water, examining 22 nutrient elements and ions and 21 toxic substances. The function of the nutrients in the body, symptoms of deficiency and overload, and advantages of the minerals from drinking water are presented, as well as symptoms of toxic elements from drinking water. The authors also suggest healthy ranges of minerals and mineral ratios for drinking water. The book offers a valuable resource for the health evaluation of drinking waters, for private well owners, public water producers and safety organizations alike.
This volume provides a comprehensive overview of environmental aspects of the Sava River, which is the greatest tributary to the Danube River and the major drainage river system of South Eastern Europe. Hydroelectric power plants, river traffic, intensive agricultural activities, heavy industry and floods have considerable influence on the environment and biota in the basin. Summarizing the results that were gathered in the course of EU, bilateral and national projects, the book highlights the most important stressors and helps readers to better understand the impact of anthropogenic activities on the function of river basins. Topics include: transboundary water cooperation between the riparian countries; climate change projection, including its impact on flood hazards; evaluation of anthropogenic pollution sources; pollution of sediments, metal bioavailability and ecotoxicological and microbiological characterization of the river. The biological part also addresses quality aspects related to wildlife in river aquatic ecosystems (algae, macrophytes, zooplankton, macroinvertebrates and fish) and riparian ecosystems (amphibians, reptiles, birds and mammals). The general state of biodiversity and pressures caused by invasive aquatic species are also discussed.
This book explains how it came to be that Venus and Earth, while very similar in chemical composition, zonation, size and heliocentric distance from the Sun, are very different in surface environmental conditions. It is argued here that these differences can be accounted for by planetoid capture processes and the subsequent evolution of the planet-satellite system. Venus captured a one-half moon-mass planetoid early in its history in the retrograde direction and underwent its "fatal attraction scenario" with its satellite (Adonis). Earth, on the other hand, captured a moon-mass planetoid (Luna) early in its history in prograde orbit and underwent a benign estrangement scenario with its captured satellite.
This edited work contains the most recent advances related to the study of layered intrusions and cumulate rocks formation. The first part of this book presents reviews and new views of processes producing the textural, mineralogical and geochemical characteristics of layered igneous rocks. The second part summarizes progress in the study of selected layered intrusions and their ore deposits from different parts of the world including Canada, Southwest China, Greenland and South Africa. Thirty experts have contributed to this update on recent research on Layered Intrusions. This highly informative book will provide insight for researchers with an interest in geology, igneous petrology, geochemistry and mineral resources.
From a new perspective, namely focusing on the interaction of selenium and mercury, this thesis provides new insights into traditional research on biogeochemical cycles of mercury in soil-plant interaction and associated human exposure and risks. The subject of this thesis is both valuable and timely, providing essential information not only on selenium-mercury interaction in the soil-plant system but also on how to assess the combined benefits and risk of co-exposure to mercury and selenium. This work also sheds light on future aspects regarding prevention, remediation and risk management for environmental mercury contamination. Presenting high-quality papers published in leading international SCI journals such as Environmental Health Perspectives and Environmental Science & Technology and having been recognized with the Special Award of Presidential Scholarship Award and Excellent Doctoral Dissertations Prize of the Chinese Academy of Sciences (CAS), this thesis offers a valuable resource for scientific communities, policy-makers and non-experts who are interested in this field. Dr. Hua Zhang works at the Norwegian Institute for Water Research (NIVA), Oslo, Norway.
The widespread mafic-ultramafic complexes in the Earth are well-known as their hosting Ni-Cu-PGE ore deposits, and their petrogenesis and mineralization have become hot issues in the geological studies. This thesis comprehensively investigated the petrology, mineralogy, geochemistry and geochronology of several mafic-ultramafic complexes in the Beishan Terrane, southern Central Asian Orogenic Belt aimed at systematically determining the mineralization and petrogenetic processes responsible for the formation of the complexes and placing constraints on the tectonic evolution of the Eastern Tianshan and Beishan, and the Early Permian mantle plume. The thesis identified mineralizing indicators of Ni-Cu sulfide deposits and defined the roles of partial melting, fractional crystallization, crustal assimilation and magma injection. The systematical isotopic compositions revealed the mantle source of the mafic-ultramafic complexes had undergone the subduction-related modifications both from the South Tianshan Ocean and subsequently the Junggar Ocean, and that the complexes were emplaced in the period of 269-285 Ma coeval with the 280 Ma mantle plume event in the Tarim Craton. The results of this thesis provide new insights about the tectonic setting, magma evolution, ore genesis, and exploration implications of the mafic-ultramafic complexes in Central Asian Orogenic Belt. Dr. Benxun Su works at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.
The first volume in this new text book series covers comprehensively relevant aspects related to the appearance and characterisation of fossil matter in the geosphere such as kerogen, oil, shales and coals. As organic geochemistry is a modern scientific subject characterized by a high transdisciplinarity and located at the edge of chemistry, environmental sciences, geology and biology, there clearly is a need for a flexible offer of appropriate academic teaching material on an undergraduat level addressed to the variety of students coming originally from different study disciplines. For such a flexible usage this textbook series' consists of different volumes with clear defined aspects and with manageable length.
In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of “emerging contaminants†that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a “human lifetime scaleâ€.
The Indian National Science Academy was established in January 1935 with the objective of promoting science in India and harnessing scientific knowledge for the cause of humanity and national welfare. In 1968 it was designated as the adhering organisation in India to the International Council for Scientific Union (ICSU) on behalf of the Government of India. Over the years, the Academy has published a number of journals, volumes, biographical memoirs, etc. The year 2009-2010 will be specially celebrated to mark the Platinum Jubilee of the Academy. Many programmes are planned in different centres in India on this occasion. In addition, the Academy has decided to publish a number of special volumes on different s- jects ranging from earth sciences to life sciences. This volume is on Physics and Chemistry of the Earth's Interior. One of the main objectives of geophysicists is to establish the internal structure of the earth as revealed by seismic tomography. It is also their primary goal to correlate geophy- cal data to reveal thermal and chemical state of the crust, mantle and core of the earth. In - der to interpret seismic velocities and associated density and elastic properties in terms of mineralogical and petrological models of the earth's interior, thermodynamic and hi- pressure temperature data from mineral physics are essential. With the advent of different types of multi-anvil and laser-heated diamond anvil equipment, it is now possible to simulate conditions prevalent even in the lower mantle and core of the earth.
This handbook is a reference guide for selecting and carrying out numerous methods of soil analysis. It is written in accordance with analytical standards and quality control approaches. It covers a large body of technical information including protocols, tables, formulae, spectrum models, chromatograms and additional analytical diagrams. The approaches are diverse, from the simplest tests to the most sophisticated determination methods.
Natural saline water, waste water, and irrigation return flow endanger the groundwater aquifers in the Rift. In the long run this will ruin the socio-economic backbone of the settlements in the area. Sustainability of the water resources will only be achieved when the process of water replenishment and its underground flow is understood and water extraction is regionally controlled. Rare earth element and spider patterns are presented as new tools for studying the hydrology. Progress in 3-D modelling of groundwater flow proved successfully the impact of pumping on the surroundings of wells and overexploitation of aquifers.
This volume provides a comprehensive overview of advanced research in the field of efficient, clean and renewable energy production, conversion and storage. The ten chapters, written by internationally respected experts, address the following topics: (1) solar and wind energy; (2) energy storage in batteries; (3) biomass; and (4) socio-economic aspects of energy. Given its multidisciplinary approach, which combines environmental analysis and an engineering perspective, the book offers a valuable resource for all researchers and students interested in environmentally sustainable energy production, conversion, storage and its engineering.
This book brings together eastern and western scholarship on a controversial subject: a catastrophic inundation of the Pontic basin which might have inspired the biblical story of Noah's flood. In 35 papers, many previously unavailable in English, experts in oceanography, marine geology, paleoclimate, paleoenvironment, archaeology, and linguistic spread offer data and arguments for or against the flood hypothesis. Appendices include 600 radiocarbon dates from the region, obtained by USSR and western labs.
The twelve chapters of this volume aim to provide a complete manual for using noble gases in terrestrial geochemistry, covering applications which range from high temperature processes deep in the Earth's interior to tracing climatic variations using noble gases trapped in ice cores, groundwaters and modern sediments. Other chapters cover noble gases in crustal (aqueous, CO2 and hydrocarbon) fluids and laboratory techniques for determining noble gas solubilities and diffusivities under geologically relevant conditions. Each chapter deals with the fundamentals of the analysis and interpretation of the data, detailing sampling and sampling strategies, techniques for analysis, sources of error and their estimation, including data treatment and data interpretation using recent case studies. |
![]() ![]() You may like...
Poetic Inquiry For The Human And Social…
Heidi van Rooyen, Kathleen Pithouse-Morgan
Paperback
|