Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
This book contains the full set of RILEM Recommendations which have been produced to enable engineers, specifiers and testing houses to design and produce concrete which will not suffer damage arising from alkali reactions in the concrete. There are five recommended test methods for aggregates (designated AAR-1 to AAR-5), and an overall recommendation which describes how these should be used to enable a comprehensive aggregate assessment (AAR-0). Additionally, there are two Recommended International Specifications for concrete (AAR-7.1 & 7.2) and a Preliminary International Specification for dams and other hydro structures (AAR-7.3), which describe how the aggregate assessment can be combined with other measures in the design of the concrete to produce a concrete with a minimised risk of developing damage from alkali-aggregate reactions.
This book provides an overview, research compendium and an introduction to the science of molecular paleontology, including literature overview for non-geochemists. Analytical methods employed are included as a part of each chapter that underpin this branch of paleontology and indeed geochemistry. The primary usefulness of this volume is for organic geochemists, molecular palaeontologists, and molecular archeologists. Researchers, graduate students and academics interested in astrobiology from a paleontological perspective may also find this to be valuable.
The book summarizes the occurrence, geochemistry, mineralogy, petrology and phase-equilibria studies in air and under high pressures related to the most intriguing group of potassium-rich mafic and ultramafic rocks, often including host of exotic mineral assemblages including feldspathoids. Mantle-derived K-rich melts had intrigued most of the founders of Geology and many of the later experts in the field of Igneous Petrology, because they are sometimes associated with carbonatites and even diamond. They tend to contain anomalous concentration of many such elements as K, Rb, Sr, U, F, P, etc., along with Ni, Co and Cr indicating a mixture of crust and mantle materials. Although these rocks occur rarely in ancient geologic time, they have been erupting mostly in modern geological history (less than last 120 Ma or so). Are the old age data real or the result of a sampling problem? Modern observations leave no doubt that sediments must be subducted on a large scale. There is now evidence that the upper mantle (and perhaps even the lower mantle) is not homogeneous but rather like a fruit cake, and that there are thermal anomalies in the mantle resulting from deep mantle plumes or subduction. Is this related to release of these unusual rocks clearing the mantle of left over subduction materials? This volume, written for those interested in the geochemistry of K-rich melts from the deep Earth, reviews the present state of knowledge of these unique igneous rocks. The author is an expert in the field of Igneous Petrology and the book will serve as a valuable reference book for researchers and academicians in the discipline.
Fluid-aided mass transfer and subsequent mineral re-equilibration are the two defining features of metasomatism and must be present in order for metamorphism to occur. Coupled with igneous and tectonic processes, metasomatism has played a major role in the formation of the Earth's continental and oceanic crust and lithospheric mantle as well as in their evolution and subsequent stabilization. Metasomatic processes can include ore mineralization, metasomatically induced alteration of oceanic lithosphere, mass transport in and alteration of subducted oceanic crust and overlying mantle wedge, which has subsequent implications regarding mass transport, fluid flow, and volatile storage in the lithospheric mantle overall, as well as both regional and localized crustal metamorphism. Metasomatic alteration of accessory minerals such as zircon or monazite can allow for the dating of metasomatic events as well as give additional information regarding the chemistry of the fluids responsible. Lastly present day movement of fluids in both the lithospheric mantle and deep to mid crust can be observed utilizing geophysical resources such as electrical resistivity and seismic data. Such observations help to further clarify the picture of actual metasomatic processes as inferred from basic petrographic, mineralogical, and geochemical data. The goal of this volume is to bring together a diverse group of geologists, each of whose specialities and long range experience regarding one or more aspects of metasomatism during geologic processes, should allow them to contribute to a series of review chapters, which outline the basis of our current understanding of how metasomatism influences and helps to control both the evolution and stability of the crust and lithospheric mantle.
This textbook details basic principles of planetary science that help to unify the study of the solar system. It is organized in a hierarchical manner so that every chapter builds upon preceding ones. Starting with historical perspectives on space exploration and the development of the scientific method, the book leads the reader through the solar system. Coverage explains that the origin and subsequent evolution of planets and their satellites can be explained by applications of certain basic principles of physics, chemistry, and celestial mechanics and that surface features of the solid bodies can be interpreted by principles of geology.
Focusing on issues of when and how Archean crust in the craton was formed, this PhD thesis book presents major research outcomes of field based metamorphic, geochemical and geochronological investigations on Meso-Neoarchean basement rocks from Shandong Province in the Eastern Block of the North China Craton. Based on major findings and new data, the author proposes that the formation and evolution of Archean crust was governed by mantle plumes, not by plate tectonics. As one of the oldest cratonic blocks in the world containing rocks as old as 3.85 billion years, the formation and evolution of North China Craton is still controversial. Therefore this book will be of value to anyone interested in the evolution of cratonic blocks and Precambrian geology.
This thorough review is based on observational satellite, airborne and in-situ data, scientific literature and technical reports, as well as the substantial experience of the authors, who hail from several Baltic Sea countries. They pay special attention to national practices, HELCOM and EMSA CleanSeaNet activities in oil pollution monitoring, and show different applications of the Seatrack Web model for oil spill drift prediction and the identification of illegal polluters, as well as for environmental risk assessment. Furthermore, some of the results on satellite monitoring of the Nord Stream gas pipeline construction in the Gulf of Finland are presented. This volume addresses the needs of specialists working in different fields of marine, environmental, and remote sensing sciences. It is a useful handbook on oil pollution for international and governmental agencies, as well as for policy makers who plan and manage oil and gas projects, the construction of ports and terminals, shipping, fishery, recreation, and tourist activities in the Baltic Sea. It also offers graduate and undergraduate students in marine and environmental sciences a valuable resource and reference work on the subject.
This book provides a comprehensive description of groundwater resources in Ethiopia and its various dimensions (groundwater as resource, environmental functions, and socioeconomics). The prevailing knowledge of groundwater resources in Ethiopia (or elsewhere in Sub Saharan Africa) was based on geological and stratigraphic framework known nearly four decades ago (mainly 1960's and 70's). Thanks to the substantial geoscientific research since the 70's a new set of relevant geological/stratigrahpic data has been created that helps to re-define our understanding of groundwater resources in Africa as a whole and in Ethiopia in particular: a) For the first time the basement aquifer of Ethiopia has been described hydrogeologically based on genesis of regoliths (deep weathering and striping history); clear regional difference in groundwater potential is shown for the first time; comparative accounty has been given regarding groundwater occurrence in the generally low grade basement rocks of Ethiopia (Arabian Nubian shield) and high grade basement rocks of the rest of Africa. b) For the first time groundwater occurrence in multilayred sedimentary rocks account for spatial variation in degree of karstification; deformation history, and stratigraphy. c) The vast volcanic aquifers of Ethiopia which have previously classified based on their ages are now reclassified based on age, morphology (eg. groundwater in plateau volcanics, groundwater in shield volcanics) and aquifer structure. d) The loose alluvio lacustrine sediments which were known as least extensive in previous works based on areal cover are in fact shown to host the most voluminous groundwater resources in Ethiopia. These aquifers have now been described based on their geomorphology, extent, and genesis. The aim of this book is to use these newly created knowledge to redefine the understanding of groundwater resources in Ethiopia.
This book provides an introductory understanding of fluvial geomorphic principles and how these principles can be integrated with geochemical data to cost-effectively characterize, assess and remediate contaminated rivers. The book stresses the importance of needing to understand both geomorphic and geochemical processes. Thus, the overall presentation is first an analysis of physical and chemical processes and, second, a discussion of how an understanding of these processes can be applied to specific aspects of site assessment and remediation. Such analyses provide the basis for a realistic prediction of the kinds of environmental responses that might be expected, for example, during future changes in climate or land-use.
This book will broaden readers' understanding of pegmatites in a special geodynamic setting, dealing with the emplacement of the Hagendorf-Pleystein Pegmatite Province (HPPP) in the Central European Variscides. This treatise illustrates the complex processes leading to the formation and partial destruction of the pegmatites, documenting the geochronological, chemical, mineralogical, geological and geomorphological / sedimentological data set. The book starts with a detailed account of the economic geology of the various pegmatites, explaining why these deposits are a major resource of ceramic raw materials. In its concluding section, a model of the pegmatite evolution in an ensialic orogen provides meaningful insights into the genetic aspects of pegmatite generation. The Late Paleozoic rare-element pegmatites of the HPPP, Oberpfalz-SE, Germany, rank among the largest concentrations in Europe. The biggest pegmatite of this mining district totals 4.4 million tons of ore (Hagendorf-South). The mining history of the HPPP is restricted to the 20th century, when local entrepreneurs started mining operations in search of ceramic raw materials, feldspar and quartz. Today the "Silbergrube Aplite" is still worked for feldspar. The traditional mining of pegmatitic and aplitic rocks in Central Europe, such as the Bohemian Massif, which is shared by Germany, the Czech Republic, Poland and Austria, has been focused on these industrial minerals. In addition to these major commodities, lithium was mined for a period of time. But even today many of these pegmatites of calc-alkaline affiliation have not lost their appeal to mineralogists and mineral enthusiasts for their wealth of minerals that contain P, Nb, Ta, Li, Be, B, U, Th, Sc, Ti and Sn. The most favorable crustal section to bring about pegmatitic rocks of this type, encompassing pegmatoids, metapegmatites, reactivated pseudopegmatites and pegmatites sensu stricto is the ensialic orogen, exemplified by the Variscan (Hercynian) Orogen, which geodynamically connects the Paleozoic pegmatite provinces in North America and Europe. The geological history of the HPPP, however, goes much further than the Carboniferous-Permian magmatic activity, when the last structural disturbances of the Variscan orogeny affected the NE-Bavarian Basement between 450 and 330 Ma. During this time mafic magmatic rocks together with calcareous and arenaceous sediments were converted into paragneisses, calcsilicate rocks, and amphibolites. It is the period of time when tectonic shortening led to over thrusting and when the emplacement of nappes and the architectural elements of the ensialic orogen began taking shape. During the Late Permian, the Mesozoic and the Cenozoic, the HPPP did not lie idle in geological terms; hypogene and supergene alteration continued and found its most recent expression in alluvial-fluvial "nigrine" placer deposits, which resulted from the unroofing of the pegmatites and aplites in the HPPP and can be used even outside HPPP as an ore guide to pegmatites.
concentrates on teaching techniques using as much theory as needed. application of the techniques to many problems of materials characterization. Moessbauer spectroscopy is a profound analytical method which has nevertheless continued to develop. The authors now present a state-of-the art book which consists of two parts. The first part details the fundamentals of Moessbauer spectroscopy and is based on a book published in 1978 in the Springer series 'Inorganic Chemistry Concepts' by P. Gutlich, R. Link and A.X. Trautwein. The second part covers useful practical aspects of measurements, and the application of the techniques to many problems of materials characterization. The update includes the use of synchroton radiation and many instructive and illustrative examples in fields such as solid state chemistry, biology and physics, materials and the geosciences, as well as industrial applications. Special chapters on magnetic relaxation phenomena (S. Morup) and computation of hyperfine interaction parameters (F. Neese) are also included. The book concentrates on teaching the technique using theory as much as needed and as little as possible. The reader will learn the fundamentals of the technique and how to apply it to many problems of materials characterization. Transition metal chemistry, studied on the basis of the most widely used Moessbauer isotopes, will be in the foreground.
Planet formation studies uniquely benefit from three disciplines: astronomical observations of extrasolar planet-forming disks, analysis of material from the early Solar System, and laboratory astrophysics experiments. Pre-planetary solids, fine dust, and chondritic components are central elements linking these studies. This book is the first comprehensive overview of planet formation, in which astronomers, cosmochemists, and laboratory astrophysicists jointly discuss the latest insights from the Spitzer and Hubble space telescopes, new interferometers, space missions including Stardust and Deep Impact, and laboratory techniques. Following the evolution of solids from their genesis through protoplanetary disks to rocky planets, the book discusses in detail how the latest results from these disciplines fit into a coherent picture. This volume provides a clear introduction and valuable reference for students and researchers in astronomy, cosmochemistry, laboratory astrophysics, and planetary sciences.
This volume provides a state-of-the-art summary of biogeochemical dynamics at major river-coastal interfaces for advanced students and researchers. River systems play an important role (via the carbon cycle) in the natural self-regulation of Earth's surface conditions by serving as a major sink for anthropogenic CO2. Approximately 90 percent of global carbon burial occurs in ocean margins, with the majority of this thought to be buried in large delta-front estuaries (LDEs). This book provides information on how humans have altered carbon cycling, sediment dynamics, CO2 budgets, wetland dynamics, and nutrients and trace element cycling at the land-margin interface. Many of the globally important LDEs are discussed across a range of latitudes, elevation and climate in the drainage basin, coastal oceanographic setting, and nature and degree of human alteration. It is this breadth of examination that provides the reader with a comprehensive understanding of the overarching controls on major river biogeochemistry.
This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
This book reviews the geochemical and petrological characteristics of potassic igneous rock complexes, and investigates the different tectonic settings in which these rocks occur. The authors provide an overview and classification of these rocks and elucidate the geochemical differences between barren and mineralized potassic igneous complexes. High-K rocks host a number of epithermal gold and porphyry copper-gold deposits. In recent years, there has also been growing recognition of an association of such rocks with iron-oxide copper-gold (IOCG) deposits, intrusion-related gold deposits (IRGDs) and possibly even Carlin-type gold deposits. This book is not only relevant to academic petrologists working on alkaline rocks, but also to exploration geologists prospecting for epithermal gold and/or porphyry copper-gold deposits in modern and ancient terrains. This fourth, updated and expanded edition incorporates new data and references from Africa, Australia, Brazil, China, Greece, Iran, Mongolia, North America, Russia and Turkey, including new maps and sections and new color plates of high-grade gold-copper ore from major deposits hosted by potassic igneous rocks.
This book provides an overview of air quality in urban environments in Europe, focusing on air pollutant emission sources and formation mechanisms, measurement and modeling strategies, and future perspectives. The emission sources described are biomass burning, vehicular traffic, industry and agriculture, but also African dust and long-range transport of pollutants across the European regions. The impact of these emission sources and processes on atmospheric particulate matter, ozone, nitrogen oxides and volatile and semi-volatile organic compounds is discussed and critical areas for particulate matter and nitrogen dioxide in Europe are identified. Finally, this volume presents future perspectives, mainly regarding upcoming air quality monitoring strategies, metrics of interest, such as submicron and nanoparticles, and indoor and outdoor exposure scenarios.
Over the last fifteen years, space-based exploration of the solar system has increased dramatically, with more and more sophisticated orbiters and landers being sent to Mars. This intense period, rich in unprecedented scientific results, has led to immense progress in our perception of Mars and of its evolution over geological time. In parallel, advances in numerical simulations and laboratory experiments also shed new light on the geochemical evolution of the planet Mars. The ISSI-Europlanet Workshop entitled "Quantifying the Martian Geochemical Reservoirs" was held in Bern in April 2011 with the objective to create a diverse interdisciplinary forum composed of scientists directly involved in space-based exploration of the Martian surface, meteoriticists studying SNC meteorites, and planetary and/or Earth scientists simulating, numerically or experimentally, the physical and chemical processes occurring on or within Mars. The chapters of this book provide an overview of current knowledge of the past and present Martian geochemical reservoirs, from the accretionary history to the secondary alteration processes at the surface. In addition to the detailed description of data from Mars and the methods used to obtain them, the contributions also emphasize comparison with features on Earth, providing a perspective on the extent to which our knowledge of terrestrial systems influences interpretation of data from Mars. Areas that would benefit from future work and measurements are also identified, providing a view of the short-term and long-term future of the study of Mars. This collection of chapters constitutes a timely perspective on current knowledge and thinking concerning the geochemical evolution of Mars, providing context and a valuable reference point for even more exciting future discoveries. It is aimed at graduate students and researchers active in geochemistry and space science. Previously published in Space Science Reviews, Vol. 174/1-4, 2013.
Stable Isotope Geochemistry is an introduction to the use of stable isotopes in the geosciences. For students and scientists alike the book will be a primary source of information with regard to how and where stable isotopes can be used to solve geological problems. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. In the last decade, major advances in multicollector-ICP-mass-spectrometry enable the precise determination of a wide range of transition and heavy elements. Progress in analysing the rare isotopes of certain elements allows the distinction between mass-dependent and mass-independent fractionations. These major advances in analytical techniques make an extended new edition necessary. Special emphasis has been given to the growing field of “non-traditional” isotope systems. Many new references have been added, which will enable quick access to recent literature.
Chemical additives are used to enhance the properties of many industrial products. Since their release into the environment is a potential risk for man and nature, their fate and behavior have been investigated in the framework of the European Union-funded project RISKCYCLE. The results are presented in two volumes, Global Risk-Based Management of Chemical Additives I: Production, Usage and Environmental Occurrence and Global Risk-Based Management of Chemical Additives II: Risk-Based Assessment and Management Strategies. This book is the second of the two volumes and features two main parts. In the first part, experts in the field discuss different models related to the assessment of the potential risks posed by chemical additives and analyze their benefits and drawbacks. In the second part, specific case studies in which the models have been applied are presented and the reliability of the models is evaluated. This volume is an invaluable source of information for scientists and governmental agencies dealing with the risk assessment of chemicals on a global scale.
Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. First published in 2006, Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9781107407152 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included.
This book includes a collection of chapters illustrating the application of geochemical methods to investigate the interactions between geological materials and fluids with humans. Examples include the incorporation and human health effects of inhaling lithogenic materials, the reactivity of biological fluids with geological materials, and the impact on nascent biomineral formation. Biomineralization is investigated in terms of mineralogy, morphology, bone chemistry, and pathological significance with a focus on the health impacts of "foreign" geological/environmental trace element incorporation. One of the contribution is devoted to particulate matter, the presence of metals and metalloids in the environment, and the possibility of using human hair as a biomarker between environmental/geological exposure and human bioincorporation. Other chapters focus on the last advances on the analytical methods and instrumentational approaches to investigating the chemistry of biological fluids and tissues.
This textbook presents the chemistry of the environment using the full strength of physical, inorganic and organic chemistry, in addition to the necessary mathematics and physics. It provides a broad yet thorough description of the environment and the environmental impact of human activity using scientific principles. It gives an accessible account while paying attention to the fundamental basis of the science, showing derivations of formulas and giving primary references and historical insight. The authors make consistent use of professionally accepted nomenclature (IUPAC and SI), allowing transparent access to the material by students and scientists from other fields. This textbook has been developed through many years of feedback from students and colleagues. It includes more than 400 online student exercises that have been class tested and refined. The book will be invaluable in environmental chemistry courses for advanced undergraduate and graduate students and professionals in chemistry and allied fields.
The Earth system consists of subsystems that include the atmosphere, hydrosphere (water), geosphere (rocks, minerals), biosphere, and humans. In order to understand these subsystems and their interactions, it is essential to clarify the mass transfer mechanism, geochemical cycle, and influence of human activity on the natural environment. This book presents fundamental theories (thermodynamics, kinetics, mass balance model, coupling models such as the kinetics-fluid flow model, the box model, and others) concerning mechanisms in weathering, formation of hydrothermal ore deposits, hydrothermal alteration, formation of groundwater quality, and the seawater system. The interaction between fluids (atmosphere, water) and solid phases (rocks, minerals) occurs both in low-temperature and also in high-temperature systems. This book considers the complex low-temperature cycle with the high-temperature cycle, a combination that has not been dealt with in previous books concerning Earth systems. Humanity is a small part of the biosphere; however, human activities greatly influence Earth's surface environments (atmosphere, hydrosphere, biosphere, soils, rocks). Thus, the influences of humans on other subsystems, particularly mass transfer in the deep underground geologic environment composed of host rocks and groundwater, are discussed in relation to high-level nuclear waste geologic disposal and CO2 underground sequestration-topics that have not been included in other books on environmental science.
This book takes an in-depth look at the theory and methods inherent in the tracing of riverine sediments. Examined tracers include multi-elemental concentration data, fallout radionuclides (e.g., 210Pb, 137Cs, 7Be), radiogenic isotopes (particularly those of Pb, Sr, and Nd), and novel ("non-traditional") stable isotopes (e.g., Cd, Cu, Hg, and Zn), the latter of which owe their application to recent advances in analytical chemistry. The intended goal is not to replace more 'traditional' analyses of the riverine sediment system, but to show how tracer/fingerprinting studies can be used to gain insights into system functions that would not otherwise be possible. The text, then, provides researchers and catchment managers with a summary of the strengths and limitations of the examined techniques in terms of their temporal and spatial resolution, data requirements, and the uncertainties in the generated results. The use of environmental tracers has increased significantly during the past decade because it has become clear that documentation of sediment and sediment-associated contaminant provenance and dispersal is essential to mitigate their potentially harmful effects on aquatic ecosystems. Moreover, the use of monitoring programs to determine the source of sediments to a water body has proven to be a costly, labor intensive, long-term process with a spatial resolution that is limited by the number of monitoring sites that can be effectively maintained. Alternative approaches, including the identification and analysis of eroded upland areas and the use of distributed modeling routines also have proven problematic. The application of tracers within riverine environments has evolved such that they focus on sediments from two general sources: upland areas and specific, localized, anthropogenic point sources. Of particular importance to the former is the development of geochemical fingerprinting methods that quantify sediment provenance (and to a much lesser degree, sediment-associated contaminants) at the catchment scale. These methods have largely developed independently of the use of tracers to document the source and dispersal pathways of contaminated particles from point-sources of anthropogenic pollution at the reach- to river corridor-scale. Future studies are likely to begin merging the strengths of both approaches while relying on multiple tracer types to address management and regulatory issues, particularly within the context of the rapidly developing field of environmental forensics.
As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry. |
You may like...
Uranous Mineralogy of Hypergene…
Olga Alexandrovna Doynikova
Hardcover
R3,941
Discovery Miles 39 410
Advances in Experimental and Genetic…
Yuriy Litvin, Oleg Safonov
Hardcover
R2,840
Discovery Miles 28 400
Cotton and Flax Fibre-Reinforced…
It-Meng Low, Thamer Alomayri, …
Hardcover
R4,580
Discovery Miles 45 800
Environmental Assessment of Patagonia's…
Americo Iadran Torres, Verena Agustina Campodonico
Hardcover
R3,078
Discovery Miles 30 780
Introduction to Analytical Methods in…
Jan Schwarzbauer, Branimir Jovancicevic
Hardcover
R3,508
Discovery Miles 35 080
Estuarine Biogeochemical Dynamics of the…
Sourav Das, Tuhin Ghosh
Hardcover
R3,948
Discovery Miles 39 480
Natural Risk Management and Engineering…
Milan Gocic, Giuseppe Tito Aronica, …
Hardcover
R2,807
Discovery Miles 28 070
|