Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
This compilation of techniques, methodologies and scientific data arises from a four-year Italian research project, which took place at university research stations in Turin, Piacenza, Naples and Potenza. Soil Organic Matter (SOM) represents an active and essential pool of the total organic carbon on the planet. Consequently, even small changes in this SOM carbon pool may have a significant impact on the concentration of atmospheric CO2. Recent new understanding of the chemical nature of SOM indicates that innovative and sustainable technologies may be applied to sequester carbon in agricultural soils. Overall results of the project have been applied to develop an innovative model for the prediction and description, both quantitatively and qualitatively, of carbon sequestration in agricultural soils. This book provides experts in different areas of soil science with a complete picture of the effects of new soil management methods and their potentials for practical application in farm management.
The Baltic Sea is an area extensively explored by the oceanographers. Hence it is one of the most often described marine areas in the scientific literature. However, there are still several fields which are poorly investigated and reported by scientists. One of them is the carbon cycle of the Baltic Sea. Although it is believed the shelf seas are responsible for about 20% of all marine carbon dioxide uptake, while they constitute only 7% of the whole sea surface, still a scientific debate exists on the role of the Baltic Sea in the global carbon cycle. "Carbon cycle of the Baltic Sea" is intended to be a comprehensive presentation and discussion of state of the art research by biogeochemists involved in the Baltic Sea carbon cycle research. This work presents both qualitative and quantitative descriptions of the main carbon flows in the Baltic Sea as well as their possible shifts induced by climatic and global change.
Due to their unparalleled effectiveness and efficiency, polyfluorinated chemicals (PFC") "have become essential in numerous technical applications. However, many PFCs brought to market show limited biodegradability, and their environmental persistence combined with toxic and bioaccumulative potential have become a matter of concern in some instances. This volume highlights the synthesis of PFCs, focusing on substances with improved application and environmental properties, which are a challenge for synthetic chemists. Further, modern mass spectrometric techniques for the detection and identification of biotransformation products of PFCs are described. The sorption and leaching behavior of PFC in soil is also addressed in order to predict their fate in the environment. Several contributions discuss the monitoring of PFCs in European surface, ground and drinking waters, treatment options for PFC removal from drinking water, occurrence in food, and the human biomonitoring of PFCs.
These Proceedings contain both oral and poster contributions to the first interna tional conference" Field Screening Europe - Strategies and Techniques for On-Site Investigation and Monitoring of Contaminated Soil, Water and Air," held in Karls ruhe September 29 - October 1, 1997. Environmental monitoring and the assessment of chemical contaminations are be coming more and more important. The integrated study of environmental con tamination in the field is a rather recent approach. "Field screening" indicates such field analytical tools, (quick) methods and strategies for on-site or in-situ environmental analysis and assessment of contamination. The classical strategy for investigating contaminants consists of the following steps: site studies, sampling, sample transport to the laboratory, sample preparation, and analysis. This strategy is rather expensive and time consuming. Some investiga tions, including sample preparation, may last several days. In many cases, the results must be available immediately and are of importance for further decisions. Field screening is an alternative or complement to this strategy that attempts to be cheaper and faster and may achieve the same quality of results. The most important argument for field analytical methods is that the superior accuracy and high costs of laboratory methods are disproportional to the possibility of arti facts from sampling and errors originating from spatial variations of contaminants."
The book is a quantitative treatment of the theory and natural variations of light stable isotopes, and includes more than 100 original applications. Isotope distribution is rigorously discussed in the context of fractionation processes, thermodynamics, mass conservation, exchange kinetics and diffusion theory. The theoretical principles are illustrated with natural examples, emphasizing oygen and hydrogen isotope variations in natural waters, terrestrial and extraterrestrial rocks, and hydrothermal systems. New data on meteoric precipitation, rivers, and hydrothermal systems are included.
A sound understanding of the global carbon cycle requires an appreciation of the various physico-chemical and biological processes that determine the production, distribution, deposition and diagenesis of organic matter in the natural environment. This book is a comprehensive interdisciplinary synthesis of this information, coupled with an organic facies approach based on data from both microscopy and bulk organic geochemistry.
Soils form a unique and irreplaceable essential resource for all terrestrial organisms, including man. Soils form not only the very thin outer skin of the earth's crust that is exploited by plant roots for anchorage and supply of water and nutrients. Soils are complex natural bodies formed under the influence of plants, microorganisms and soil animals, water and air from their parent material, i.e. solid rock or unconsolidated sediments. Physically, chemically and mineralogically they usually differ strongly from the parent material, and normally are far more suitable as a rooting medium for plants. In addition to serving as a substrate for plant growth, including crops and pasture, soils play a dominant role in the biogeochemical cycling of water, carbon, nitrogen and other elements, influencing the chemical composition and turnover rates of substances in the atmosphere and the hydrosphere. Soils take decades to millennia to form. We tread on them and do not usually see their interior, so we tend to take them for granted. But improper and abusive agricultural management, careless land- clearing and reclamation, man-induced erosion, salinisation and acidification, desertification, air- and water pollution, and withdrawal of land for housing, industry and transportation now destroy soils more rapidly than they can be formed.
As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more than two years has elapsed since the ASI, all of the papers in this volume are up to date, and each has benefited from stimulating discussion, critical comment, and scientific interaction, both at the ASI and in the subsequent peer review process. The scientific emphasis of the ASI focused initially on upper mantle metasoma tism and crust/mantle interaction. Isotopic evidence was presented indicating that upper mantle peridotites have undergone nonequilibrium metasomatic exchange with an external oxygen-bearing fluid."
In the dozen years since the first edition appeared, there has been a great advance in understanding of the Earth's deep interior. This is not because there have been breakthroughs in understanding, or even many changes of ideas, but largely because of many small advances, often the result of improved tech niques. This has led to a complete revision of the book. For instance, we have a much better idea of how the cloud of gas that formed the Solar Nebula evolved into the Sun and the planets, and of the chemical processes that accompanied its evolution and determined the mix of elements in the Earth. We have a better understanding of convection and how plates are an essential part of it, and how it is accompanied by chemical processes that have extracted the materials to build continents. Although the major variation within the Earth is radial, improved geophysical and geochemical techniques have made progress in investigating and under standing the lateral heterogeneities, and it is encouraging that when geochemists and geophysicists talk about lateral heterogeneities they can sometimes be referring to the same thing. Plumes have become very fashionable as the cause of hot-spot magmatism and associated geochemical anomalies, probably origi nating at the base of the mantle (though clear evidence for their existence is lacking)."
This volume of Advanced Mineralogy encompasses six different areas having two features in common: they are related to one of the largest enterprises of the second half of this century; and represent the ultimate and final extension of the concept of mineral matter. - Understanding mineral matter in Space is one of the principal purposes of cosmic exploration. This includes the results of compa rative planetology, lunar epopee, sophisticated meteorite studies (now more than 500 meteorite minerals), discovery of the interstellar mineral dust forming some 60 trillion of earth masses in the Galaxy, and terrestrial impact crater studies. It is possible now to speak of mineralogy of the Universum, and the mineralogical type of the states of matter in the Universe. Direct samples of mantle xenoliths and ultrahigh pressure-tem perature experiments make it possible to consider the mineral ogical composition of the Earth as a whole, including the upper an lower mantle and the Earth's core. Deep ocean drilling programs, a scientific fleet of hundreds of vessels and several submersibles have brought about great dis coveries in the geology, metalogeny, and mineralogy of the ocean floor the largest part of the Earth's surface, in particular revealing new genetic, crystallochemical, and ore types of min eral formation."
This book is written as a reference on organic substances in natural waters and as a supplementary text for graduate students in water chemistry. The chapters address five topics: amount, origin, nature, geochemistry, and characterization of organic carbon. Of these topics, the main themes are the amount and nature of dissolved organic carbon in natural waters (mainly fresh water, although seawater is briefly discussed). It is hoped that the reader is familiar with organic chemistry, but it is not necessary. The first part of the book is a general overview of the amount and general nature of dissolved organic carbon. Over the past 10 years there has been an exponential increase in knowledge on organic substances in water, which is the result of money directed toward the research of organic compounds, of new methods of analysis (such as gas chromatography and mass spectrometry), and most importantly, the result of more people working in this field. Because of this exponential increase in knowledge, there is a need to pull together and summarize the data that has accumulated from many disciplines over the last decade.
The Qattara Depression is part of the Northwestern Desert in Egypt and is home to the second lowest point in Africa at -133 meters below sea level. Therefore, before any projects can be carried out in this area, we must first understand the geology of the land. The present study deals with the high-resolution sequence stratigraphic analysis of the Lower Miocene Moghra Formation outcrops in the Qattara Depression Region. The literature on the sedimentology and sequence stratigraphy of the Moghra Formation has been sparse to date, despite some excellent work over the years by academic and petroleum workers. Moreover, the area studied is within what was once a front-line of World War II, where mine fields and war relics are scattered and cover wide reaches. This has resulted in limited geologic mapping in the past. Thus, great attention is paid in this study to establishing a robust sedimentology and high-resolution sequence stratigraphic framework for the Lower Miocene Moghra Formation. Included are works based on outcrops and, most importantly, new sedimentological and chronostratigraphic information not previously available.
This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package "compositions," it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software. The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.
Brominated flame retardants are one of the last classes of halogenated compounds that are still being produced worldwide and used in large quantities in many applications. They are used in plastics, textiles, electronic circuitry, and other materials to prevent fires. This volume covers the state-of-the-art of the analysis, fate and behaviour of brominated flame retardants. Experts in the field provide an overview of the compounds physico-chemical properties and uses, their occurrence in the environment and biota, advanced chemical analytical methods, degradation studies, toxicological effects and human exposure. This book is a valuable and comprehensive source of information for environmental scientists interested in brominated flame retardant issues, and for authorities and producers."
This is a book about the petrology of kimberlites. It is not about upper mantle xenoliths, diamonds, or prospecting for kimberlites. The object of the book is to provide a comprehensive survey and critique of the advances which have been made in kimberlite studies over the last twenty-five years. Kimberlites are rare rock types; however, their relative obscurity is overriden by their economic and petrological importance to a degree which is not shared with the commoner varieties of igneous rocks. Kimberlites are consequently of interest to a diverse group of earth scientists, ranging from isotope g ochemists concerned with the evolution of the mantle, to volcanologists pondering the origins of diatremes, to exploration geologists seeking new occurrences of the diamondiferous varieties. A common factor essential to all of these activities is a thorough understanding of the characteristics of kimberlites. For the petrologist, kimberlites are exciting and challenging objects for study. Their petrographic diversity, complex mineralogy and geochemistry, and unusual style of intrusion provide endless opportunities for stimulating hypothesis and conjecture concerning their origin and evolution. Kimberlites are a part of a wide spectrum of continental intra-cratonic magmatism. Only by understanding all of the parts of this activity in detail may we make progress in our understanding of the whole.
Today more than 5 million chemicals are known and roughly 100,000 of them are frequently used, with both numbers rising. Many of these chemicals are ultimately released into the environment and may cause adverse effects to ecosystems and human health. Effect-directed analysis (EDA) is a promising tool for identifying predominant toxicants in complex, mostly environmental mixtures combining effect testing, fractionation and chemical analysis. In the present book leading experts in the field provide an overview of relevant approaches and tools used in EDA. This includes diagnostic biological tools, separation techniques and advanced analytical and computer tools for toxicant identification and structure elucidation. Examples of the successful application of EDA are discussed such as the identification of mutagens in airborne particles and sediments, of endocrine disruptors in aquatic ecosystems and of major toxicants in pulp and paper mill effluents. This book is a valuable, comprehensive and interdisciplinary source of information for environmental scientists and environmental agencies dealing with the analysis, monitoring and assessment of environmental contamination.
Potable water supplies that contain arsenic concentrations high
enough to pose a human health hazard are a problem of international
proportion. Surface water and ground water are both at risk of
arsenic contamination. However, most incidences of high
concentrations of arsenic have been reported for ground water,
which is the subject of this book. The geochemistry of arsenic in
aqueous environments is complex. This book consolidates much of
what is known about the geochemistry of arsenic and provides new
information on relationships between high concentrations of arsenic
in ground water and geochemical environments. The subject matter of
this book ranges in scope from molecular-scale geochemical
processes that affect the mobility of arsenic in ground water, to
arsenic contaminated ground water at the national scale. Chapters
were contributed by an international group of research scientists
from a broad range of backgrounds.
The Ebro is a typical Mediterranean river characterized by seasonal low flows and extreme flush effects, with important agricultural and industrial activity that has caused heavy contamination problems. This volume deals with soil-sediment-groundwater related issues in the Ebro river basin and summarizes the results generated within the European Union-funded project "AquaTerra." The following topics are highlighted: Hydrology and sediment transport and their alterations due to climate change, aquatic and riparian biodiversity in the Ebro watershed, occurrence and distribution of a wide range of priority and emerging contaminants, effects of chemical pollution on biota and integration of climate change scenarios with several aspects of the Ebro s hydrology and potential impacts of climate change on pollution. The primary objective of the book is to lay the foundation for a better understanding of the behavior of environmental pollutants and their fluxes with respect to climate and land use changes."
This book is a collection of all the lectures by the professors attending the 3rd "Interna tional School on Marine Chemistry" held in Ustica (Palermo, Italy, September 2000), under the auspices of the United Nations and the Italian Chemical Society. The School was organized by the University of Palermo in co-operation with the Natural Marine Reserve of Ustica Island. The Organising Committee of the School wishes to thank the University of Messina, the University of Roma "La Sapienza: ' the Italian University Consortium of Environ mental Chemistry, and the Marine Reserve of Ustica Island for their financial support to the School. This book has been printed with the financial support of the Environmental Re search Centre CIRITA of the University of Palermo. thank all the professors whose outstanding scientific contributions have The editors made it possible to publish this book. Professor Antonio Gianguzza Professor Ezio Pelizzetti Professor Silvio Sammartano Contents Part I Biogeochemical Processes at the Air-Water and Water-Sediment Interface .............................................. ."
Radiography, the use of penetrating radiation to produce shadow images of the internal structure of materials, has been with us since Roentgen made his discovery of x rays in 1895. However, applications of radiography in the earth sciences and in the related field of soils engineering have, until recent ly, been slow to develop. Bruhl reported optimistically on applications in paleontology as early as 1896 and there have been additional reports through the years. However, very few paleontologists adopted the method and the significant literature is relatively restricted. In soil mechanics, Gerber observed the movement oflead pellets in sand during a plate-bearing test as early as 1929. Gradual ly, radiography was applied to other tests including those on footings, compaction of soils, strain in sand, effects of pile penetration, and displace ments under moving wheel loads. Recently, such work has broadened into much varied and sophisticated research. Applications in geology may be dated to Hamblin's work on rocks re ported in 1962. His demonstration that many fine textural and structural details can be observed in slices of rock led to experimentation by others on unconsolidated sediments and soils. Work is now expanding at an un precedented rate. In some operations, such as the logging of oceanographic cores, it is already a routine process. The advantages of radiography lie in its nondestructive nature and its ability to reveal features that sometimes cannot be seen in any other way."
Taphonomic bias is a pervasive feature of the fossil record. A pressing concern, however, is the extent to which taphonomic processes have varied through the ages. It is one thing to work with a biased data set and quite another to work with a bias that has changed with time. This book includes work from both new and established researchers who are using laboratory, field and data-base techniques to characterise and quantify the temporal and spatial variation in taphonomic bias. It may not provide all the answers but it will at least shed light on the right questions.
The founders of geology at the beginning of the last century were suspicious oflaboratories. Hutton's well-known dictum illustrates the point: "There are also superficial reasoning men . . . they judge of the great oper ations of the mineral kingdom from having kindled a fire, and looked into the bottom of a little crucible. " The idea was not unreasonable; the earth is so large and its changes are so slow and so complicated that labo ratory tests and experiments were of little help. The earth had to be studied in its own terms and geology grew up as a separate science and not as a branch of physics or chemistry. Its practitioners were, for the most part, experts in structure, stratigraphy, or paleontology, not in silicate chemistry or mechanics. The chemists broke into this closed circle before the physicists did. The problems of the classification of rocks, particularly igneous rocks, and of the nature and genesis of ores are obviously chemical and, by the mid- 19th century, chemistry was in a state where rocks could be effectively analyzed, and a classification built up depending partly on chemistry and partly on the optical study of thin specimens. Gradually the chemical study of rocks became one of the central themes of earth science."
The Thirteenth International Conference on Basement Tectonics was held on the campus of Virginia Polytechnic Institute and State University in Blacksburg, Virginia from June 2 -6, 1997. The oral presentations and discussions over three days covered a wide range of topics, and provided the international audience with a perspective on scientific efforts underway around the world. The conference participants were able to attend two separate field trips: (I) a pre-conference trip guided by Professor Robert Hatcher of the University of Tennessee, Knoxville, examined the Basement rocks in the North Carolina -Tennessee region of the Appalachian Mountains, and (2) a mid-conference field trip guided by A.K. Sinha, convener of the conference, allowed participants to examine the complex rock associations and structures of the> 1000 m.y. old basement rocks in Virginia. Both the field trip guidebooks and abstract volumes were published for the conference. The meeting brought together scientists from more than 14 countries. Their participation, and the fiscal success of the meeting would not have been possible without the support of the Department of Geological Sciences, the College of Arts and Sciences (VPI&SU) and the Basement Tectonics Association. Their support is gratefully acknowledged. As Chairman of the Organizing Committee, I would like to thank Margie Sentelle, Jay Thomas, Peter Welch, and Barry Robinson for the smooth operation of the conference. |
You may like...
Problems of Geocosmos-2018 - Proceedings…
Tatiana B. Yanovskaya, Andrei Kosterov, …
Hardcover
R4,277
Discovery Miles 42 770
Natural Risk Management and Engineering…
Milan Gocic, Giuseppe Tito Aronica, …
Hardcover
R2,807
Discovery Miles 28 070
Applied Geochemistry with Case Studies…
Luis Felipe Mazadiego, Eduardo De Miguel Garcia, …
Hardcover
Carbon Sequestration
Suriyanarayanan Sarvajayakesavalu, Kannan Karthikeyan
Hardcover
CO2 Injection in the Network of…
J. Carlos de Dios, Srikanta Mishra, …
Hardcover
R3,624
Discovery Miles 36 240
Cotton and Flax Fibre-Reinforced…
It-Meng Low, Thamer Alomayri, …
Hardcover
R4,580
Discovery Miles 45 800
Phase Diagrams for Geoscientists - An…
Tibor Gasparik
Hardcover
|