Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
Following the long-standing tradition of the Seeheim-Workshops on
Mossbauer Spectroscopy, 1978, 1983, 1988, 1994 always held in the
same traditional place of the Lufthansa Training Center in
Seeheim/Germany, the 5th workshop took place in 2002. The main
topics covered are:
As this is the first general textbook for the field published in over twenty years, the editors have taken great care to make sure coverage is comprehensive. Diagenesis of organic matter, kerogens, exploration for fossil fuels, and many other subjects are discussed in detail to provide faculty and students with a thorough introduction to organic geochemistry.
The proposal of the School was made in 1998 to three institutions, which responded enthusiastically: The Abdus Salam International Centre for Theoretical Physics (ICTP), its main co-sponsor, the International Centre for Genetic Engineering and Biotechnology, both in Trieste, Italy, and the Chancellor's Office, Universidad Simon Bolfvar (USB). The secretarial and logistic support was provided in Trieste by the ICTP and in Caracas by USB and the IDEA Convention Center. In addition the event was generously supported by the following institutes, agencies, foundations and academies: NASA Headquarters, European Space Agency, TALVEN Programme, (Delegacion Permanente de Venezuela ante la UNESCO), The SETI Institute, Centro Latinoamericano .de Ffsica, The Third World Academy of Sciences, Academia de Ciencias Ffsicas, Matematicas y Naturales, Red Latinoamericana de Biologfa, The Planetary Society, The Latin American Academy of Sciences (Fondo ACAL), Alberto Vollmer Foundation, Inc, Fundacion J. Oro, Associated to the Catalonian Research Foundation, Red Latinoamericana de Astronomfa and Colegio Emil Friedman. A total of 36 lectures were delivered by 20 lecturers, of which 14 were from the following countries: Argentina, Mexico, Italy, Spain and the USA. Six lecturers were from the host country. In addition there were 5 chairpersons from the host country that were not participants; two participants acted as chairpersons (Pedro Benitez and Tomas Revilla).
Here is a comprehensive and up-to date compendium of the technology and management of MTBE contamination, exploring the myths which impede successful clean-up techniques, and offering effective solutions. Section I looks at the history, properties, occurrence and assessment of MTBE. Section II discusses applicable remediation technologies. Section III offers remediation case studies.
Acknowledgements Conference Summary R. D. EVANS, A. PROVINI, J. S. MATIICE, B. T. HART and J. WISNIEWSKI/Interactions Between Sediments and Water: Summary of the 7th International Symposium 1-7 Sediment I Water Dynamics D. E. WALLING and W. HE /Investigating Spatial Patterns of Overbank Sedimentation on River Floodplains 9-20 R. JEPSEN, J. ROBERTS and W. LICK / Effects of Bulk Density on Sediment Erosion Rates 21-31 T. G. MILLIGAN and D. H. LORING / The Effect of Flocculation on the Size Distributions of Bottom Sediment in Coastal Inlets: Implications for Contaminant Transport 33-42 loG. DROPPO, G. G. LEPPARD, D. T. FLANNIGAN and S. N. LlSS / The Freshwater Floc: A Functional Relationship of Water and Organic and Inorganic Floc Constituents Affecting Suspended Sediment Properties 43-53 C. H. TSAI and J. Q. HU / Flocculation of Particles by Fluid Shear in Buffered Suspensions 55-62 P. M. STONE and D. E. WALLING / Particle Size Selectivity Considerations in Suspended Sediment Budget Investigations 63-70 Q. HE and D. E. WALLING / Spatial Variability of the Particle Size Composition of Overbank Floodplain Deposits 71-80 C. YEN and Y. LIN KEY / Variations of Bed Surface Sediment Size in a Channel Bend 81-88 M. STONE and B. G. KRISHNAPPAN / Transport Characteristics of Tile-Drain Sediments From an Agricultural Watershed 89-103 U. KERN and B. WESTRICH / Sediment Budget Analysis for River Reservoirs 105-112 A. I. PACKMAN, N. H. BROOKS and J. J.
Carbon dioxide and other `greenhouse' gases are increasing in the atmosphere due to the burning of fossil fuels, the destruction of rain forests, etc., leading to predictions of a gradual global warming which will perturb the global biosphere. An important process which counters this trend toward potential climate change is the removal of carbon dioxide from the surface ocean by photosynthesis. This process packages carbon in phytoplankton which enter the food chain or sink into the deep sea. Their ultimate fate is a `rain' of organic debris out of the surface-mixed layer of the ocean. On a global scale, the mechanisms and overall rate of this process are poorly known. The authors of the 25 papers in this volume present their state-of-the-art approaches to quantifying the mechanisms by which the `rain' of biogenic debris nourishes deep ocean life. Prominent deep sea ecologists, geochemists and modelers address relationships between data and models of carbon fluxes and food chains in the deep ocean. An attempt is made to estimate the fate of carbon in the deep sea on a global scale by summing up the utilization of organic matter among all the populations of the abyssal biosphere. Comparisons are made between these ecological approaches and estimates of geochemical fluxes based on sediment trapping, one-dimensional geochemical models and horizontal (physical) input from continental margins. Planning interdisciplinary enterprises between geochemists and ecologists, including new field programs, are summarized in the final chapter. The summary includes a list of the important gaps in understanding which must be addressed before the role of the deep-sea biota in global-scale processes can be put in perspective.
The analysis of materials containing several elements used to be a difficult problem for analytical chemists, so a well established sequence of wet chemical qualitative tests were performed to ensure each element was detected. Quantitative tests could then be carried out on the sample, according to the range of elements present. Most analytical chemists were very familiar with these techniques, having been taugth them from a very early stage in their education and careers. The analytical chemist can now call on a range of specialist instrumental techniques which can detect the presence of many elements, often simultaneously, and often quantitatively, providing rapid results on samples which, in the past, could take days. The drawback is that the instruments tend to be expensive, suited to particular sample types or matrices and complex in both setting up and in the interpretation of results. Furthermore the general analytical chemist may have access and familiarity with only one or two methods. Written by an international team of contributors, each experts in their particular fields, this book familiarizes analytical chemists with the range of elemental analysis techniquers, to enable them to specify the most appropriate test for any given sample. In addition, it contains important chapters on sample preparation and quality control, essential elements in obtaining accurate and reliable analytical results. As such, this book will be essential reading for all analytical chemists. The techniques of elemental analysis are important in many other disciplines, so the book will be of particular interest to those commissioning a wide range of analytical measurements, such as chemists, geologists, environmental scientists and biologists. The breadth and depth of coverage will also make the book very useful for advanced students.
This volume focuses on isotopic signatures of volatile elements as
tracers for evolutionary processes during the formation of the Sun
and the planets from an interstellar molecular cloud and, in turn,
illuminates how the isotopic compositions of the present-day solar
system objects have been established.
Oil shales are broadly dermed as petroleum source rocks containing sufficiently high contents of organic matter (above ca 10-15 wt. %) to make utilisation a possibility. Like coal, the world's reserves of oil shales are vast being many times larger than those proven for crude oil. Indeed, some of the largest deposits occur in the USA and Europe where Estonia and Turkey have large reserves. The first recorded interest in oil shale retorting was an English patent in 1694 (Eele, Hancock and Porter, No. 330) which refers to distilling noyle from some kind of stone." The oil shale retorting industry dates back to the middle of the last century, notably Scotland, Estonia, France and Sweden in Europe. Indeed, my own Department at the University of Strathclyde has a historical link with James "Paraffin" Young, the founder of the Scottish oil shale industry who endowed a chair in Applied Chemistry. The growth of the oil industry saw the demise of the oil shale industry in most countries with the notable exception of Estonia, where kukersite has continued to be used for power generation and retorting. However, oil shale utilisation has attracted renewed attention since the early 1970s as a source of transport fuels and chemical feedstocks due to the the long term uncertainties over crude oil supplies.
Dr. Heinonen reviews and critically evaluates the scientific literature on the biological role of inorganic pyrophosphate (PPi ) published from 1940 to the end of 1999. He describes and classifies all known biochemical reactions that produce Ppi; describes and evaluates all published methods used in biological Ppi; and compiles and critically evaluates information on the concentration of PPi (with the conclusion that, contrary to common belief, PPi exists throughout the living world in rather high concentrations). Many reactions in which PPi is used as a biochemical energy source instead of ATP have been described in recent decades, especially in bacteria, protists, and plants. These reactions are evaluated from the bioenergetic and regulatory points of view. Also considered is the possible role of PPi as a source of biochemical energy in the primitive phases of life, before ATP. Data is presented on the regulatory role of PPi in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Biological Role of Inorganic Pyrophosphate book is a unique and invaluable source of references (about 1120) and summarized data for professionals who study or plan to study the role of PPi in living systems. Many different branches of science (biochemistry, microbiology, bioenergetics, plant physiology, parasitology, evolution, orthopedics, rheumatology) have involvement with PPi. This book sums up available knowledge in one place and will help scientists cross disciplinary boundaries.
Oceanographic discontinuities (e. g. frontal systems, upwelling areas, ice edges) are often areas of enhanced biological productivity. Considerable research on the physics and biology of the physical boundaries defining these discontinues has been accomplished (see [I D. The interface between water and sediment is the largest physical boundary in the ocean, but has not received a proportionate degree of attention. The purpose of the Nato Advanced Research Workshop (ARW) was to focus on soft-sediment systems by identifying deficiencies in our knowledge of these systems and defining key issues in the management of coastal sedimentary habitats. Marine sediments play important roles in the marine ecosystem and the biosphere. They provide food and habitat for many marine organisms, some of which are commercially important. More importantly from a global perspective, marine sediments also provide "ecosystem goods and services" [2J. Organic matter from primary production in the water column and contaminants scavenged by particles accumulate in sediments where their fate is determined by sediment processes such as bioturbation and biogeochemical cycling. Nutrients are regenerated and contaminants degraded in sediments. Under some conditions, carbon accumulates in coastal and shelf sediments and may by removed from the carbon cycle for millions of years, having a potentially significant impact on global climate change. Sediments also protect coasts. The economic value of services provided by coastal areas has recently been estimated to be on the order of $12,568 9 10 y" [3J, far in excess of the global GNP.
Feldspar minerals make up 60% of the crust of the Earth. They are stable in the upper mantle, and are so abundant in the crust that they form the basis of the classification of igneous rocks. At the surface, feldspars weather to form clay minerals which are the most important mineral constituent of soils. The articles in this book review the chemical reactions of feldspars over the whole sweep of pressure and temperature regimes in the outer Earth, and describe the fundamental aspects of crystal structure which underlie their properties. The book covers intracrystalline reactions, such as order-disorder transformations and exsolution, and transfer of stable and radiogenic isotopes, which can be interpreted to provide insights into the thermal history of rocks. It is suitable for final year undergraduates or research workers.
Volume 16 of Advances in Microbial Ecology has a difficult history. Nearly halfway through its completion, Gwynfryn Jones had to resign as managing edi tor for health reasons, and he asked me to take over. I want to thank Gwyn for his dedicated work in this publication series, and wish him all the best for the future. After the change in editorship, some authors had to be encouraged on rather short notice to provide their chapters in order to make appearance of this volume possible within a reasonable period of time. Nonetheless, I think that the articles we present with this volume represent an enjoyable collection of up-to-date con tributions to microbial ecology. In my own understanding, microbial ecology com prises the elucidation of microbial activities in natural or semi natural environ ments, including physiology, biochemistry, population dynamics, and interactions with all the biotic and abiotic environmental conditions microbes encounter. This comprises studies on single organisms in defined cultures in an ecological per spective, the analysis of microbial activities in complex environments, as well as the development of concepts for the interactions of microorganisms with the world in which they live. Last but not least, microbial ecology is not an exotic science studied exclusively in remote places untouched by human beings."
Accelerating progress in the application of radioactive and stable isotope analysis to a varied range of geologicla and geochemical problems in geology has required a complete revision of Isotopes in the Earth Sciences, published in 1988. This new book comprises four parts: the first introduces isotopic chemistry and examines mass spectroscopic methods; the second eeals with radiometric dating methods. Part Three examines the importance of isotopes in climato-environmental studies, and increasingly significant area of research. The last part looks at extra-terrestrial matter, geothermometry and the isotopic geochemistry of the Earth's lithosphere. Post-graduate and post-doctoral researchers in geochemistry, as well as final year undergraduates in the earth and environmental sciences, will find Radioactive and Stable Isotope Geology an invaluable, uo-to-date and thorough treatment of the theory and practice of isotopie geology.
Fission track dating is based on the microscopic observation and counting of etchable tracks left by the spontaneous fission of uranium in minerals. Since its development in 1963 the method attracted a steadily growing interest from geologists and geochronologists throughout the world. Apart from its relative experimental ease the success must be mainly ascribed to the specific ability of the method of unravelling the thermal and tectonic history of rocks, a potential which only became fully exploited during the last decade with the systematic introduction of track size analysis. The present work is the first one to deal entirely with fission track dating covering all of its aspects from the origin of the fission tracks, the basis of track etching and fading, the various dating techniques as well as practical procedures and the geologic interpretation to the most recent applications in geology and archaeology.
John E. Mylroie and Ira D. Sasowsky' Caves occupy incongruous positions in both our culture and our science. The oldest records of modem human culture are the vivid cave paintings from southern France and northern Spain, which are in some cases more than 30,000 years old (Chauvet, et ai, 1996). Yet, to call someone a "caveman" is to declare them primitive and ignorant. Caves, being cryptic and mysterious, occupied important roles in many cultures. For example, Greece, a country with abundant karst, had the oracle at Delphi and Hades the god of death working from caves. People are both drawn to and mortified by caves. Written records ofcave exploration exist from as early as 852 BC (Shaw, 1992). In the decade of the 1920's, which was rich in news events, the second biggest story (as measured by column inches of newsprint) was the entrapment of Floyd Collins in Sand Cave, Kentucky, USA. This was surpassed only by Lindbergh's flight across the Atlantic (Murray and Brucker, 1979).
A significant advance in climatological scholarship, Tectonic Uplift and Climate Change is a multidisciplinary effort to summarize the current status of a new theory steadily gaining acceptance in geoscience circles: that long-term cooling and glaciation are controlled by plateau and mountain uplift. Researchers in many diverse fields, from geology to paleobotany, present data that substantiate this hypothesis. The volume covers most of the key, dramatic transformations of the Earth's surface.
The future of the Common Fisheries Policy depends on progress in the relevant areas of research. This applies to the whole range of management decisions, where precise, reliable and complete data are essential to inform those who must decide on the pursuit of existing activities, especially in the area of maritime fisheries, and the development of promising new activities such as aquaculture. Every day the Director-General of DG XIV requires more and more information to prepare decisions which will affect the future of all those in the Community who are dependent on fishing and aquaculture. There is thus a high level of direct demand from DG XIV. Over and above this immediate and specific requirement for short- and medium-term applications, research affects the competitivity of the Community. This is one area which favours the collaboration across frontiers of all those who seek to advance knowledge. But although DG XIV is uniquely placed to appreciate the importance of research into fisheries and aquaculture, there is no question of succumbing to the temptation to directly control the scope of research or its conduct. The notion of subsidiarity can best be understood by examining the existing structures in the Member States. The Commission must act first and foremost as a catalyst, by promoting the circulation of information and the coordination of research programmes.
The chemical interaction of water and rock is one of the most fascinating an d multifaceted process in geology. The composition of surface water and groundwater is largely controlled by the reaction of water with rocks and minerals. At elevated temperature, hydrothermal features, hydrothermal 0 re deposits and geothermal fields are associated with chemical effects of water-rock interaction. Surface outcrops of rocks from deeper levels in the crust, including exposures of lower crustal and mantle rocks, often display structures that formed by interaction of the rocks with a supercritical aqueous fluid at very high pT conditions. Understanding water-rock interaction is also of great importance to applied geology and geochemistry, particularly in areas such as geothermal energy, nuclear waste repositories and applied hydrogeology. The extremely wide-ranging research efforts on the universal water-rock interaction process is reflected in the wide diversity of themes presented at the regular International Symposia on Water-Rock Interaction (WRI). Because of the large and widespread interest in water-rock interaction, the European Union of Geosciences organized a special symposium on "water-rock interaction" at EUGI0, the biannual meeting in Strasbourg 1999 convened by the editors of this volume. In contrast to the regular WRI symposia addressed to the specialists, the EUG 10 "water-rock interaction" symposium brought the subject to a general platform This very successful symposium showed the way to the future of water-rock reaction research.
This is the first book to deal specifically with the procedures used in the analysis of structural relationships and the determination of structural successions in complexly deformed rocks such as migmatites and gneisses. The establishment of structural successions enables: The rigorous control of the dating of specific events in the deformational history by constraining the sites of the dated rocks within the structural succession; The establishment of the time span of orogenic events throughout the structural succession, and the rate of orogenic processes;Their comparison to be used as a basis for correlation between dismembered and separated crustal segments in continental reconstructions;The resolution of the complex relationships between deformed ore bodies and host rocks in high grade terranes, and hence determination of the structural control of ore bodies, an essential part of any successful geological exploration, and a precondition to efficient exploitation. With its new approach, and the use of practical field examples from various parts of the world, this highly illustrated work will form an invaluable reference resource for postgraduates, lecturers and researchers in the structural and isotope geology of high-grade metamorphic terranes, as well as for exploration and survey geologists working in the field. Dr Alaric M. Hopgood who holds an Honorary Readership at the University of St Andrews, Scotland, was a Reader in the Department of Geology there until 1995.
Since 1956 the author has been making extensive and detailed investigations of saline lakes on the Qinghai-Tibet plateau. On the basis of large amounts of reliable first-hand data and multidisciplinary analysis, the book deals with the temporal-spatial evolution of the plateau saline lakes and the prospects for inorganic salts and organic resources and their exploitation and protection, as well as the relationships between saline lakes and global changes. This book is the first English monograph on saline lakes on the Qinghai-Tibet Plateau - the Roof of the World'. Compared with books about saline lakes in other areas of the world, this monograph is written in a multidisciplinary, comprehensive and systematic way. It may be used by graduate students, teachers, researchers, field geologists and engineers as a reference book in research, teaching, etc.
Research of the origins of life in connection with a marine environment started at the end of the seventies, when the black smokers' in the Pacific were discovered and the Red Sea deep hydrothermal brines were found to be a fruitful environment for abiotic synthesis of life precursors. For a while this research was categorised under the heading chemistry', but in less than a decade the topic became fully integrated into the science of 'oceanography'. The Scientific Committee on Oceanographic Research (SCOR) initiated Working Group 91: Chemical Evolution and Origin of Life in Marine Hydrothermal Systems'. This volume contains the final report of this working group.
This Special Issue of Water, Air and Soil Pollution offers original contributions from BIOGEOMON, an international symposium on ecosystem behavior and the evaluation of integrated monitoring of small catchments, held in Prague, Czech Republic, in September 1993. The meeting attracted nearly 200 scientists from 27 countries on five continents. BIOGEOMON was a loose continuation of another international meeting, GEOMON, which was held in Prague in 1987. Both sym posia provided a forum for the discussion of ideas on environmental problems in western and eastern Europe, with important contributions from the American continent. With the dramatic collapse of the iron curtain, it was our hope that more so than GEOMON, BIOGEOMON would provide opportunities for the free exchange of ideas, fostering the development of research collaborations between its participants. With international openness comes the increasing realization that every indus trialized nation has its own legacy of environmental degradation. Anthropogenic impacts differ in severity and scale; air and water transport of pollutants transform local impacts into regional and global ones, ignoring political boundaries and eco nomic differences. Environmental consequences of anthropogenic activities often are detectable at the ecosystem level. Thus, the challenge of ecosystem science, and to the individuals who practice it, is to develop a comprehensive understanding of ecosystem function in the past and at present, and to apply such understanding toward minimizing future insults to the local, regional, and global environment.
Anoxic basins are ofgreat interest to oceanographersofall disciplines. Theirextreme conditionsresult from acombinationofhigh oxygen utilization and restricted circulation. It is necessery to understand present -day anoxic environments ifwe are to understand the early evolution of the oceans (e.g. SiIlen, 1965). Sarmiento et al.(1988a) explored the causes of anoxia in the global ocean, which is in effect a "closed" basin and in marginal seas such as the Eastern Mediterranean (Sarmiento et al. 1988b). Anoxic conditions have been proposed toexist in various ocean basins at different times in the geological past (e.g. the Crataceous period; Weissert, 1981) and possibly as recent as the last glacial maximum (e.g., Sarmiento and Toggweiler,1984). The modern Black Sea has been considered as the type anoxic basin. It is the world's 2 3 largest permanaently anoxic basin (area = 423,000 km; volume = 534,000 km ) and is thought to be aquasi-steady state system. It is extremely isolated from the rest ofthe world's oceans. Only the narrow and shallow Bosporus Strait provides water exchange with the Mediterranean. Concentrationsofhydrogen sulfide reach valuesof350 Mm in the deep water and the oxygen-hydrogen sulfide Interface exists between 80 and 200m waterdepth. The hydrographic regime is characterized by low salinity surface water of riverine origin overlying high salinity deep waterofMediterranean origin. Asteep pycnocline is the primary phycical barrier to mixing and is the origin of the stability of the anoxic interface.
Since their first industrial use polymers have gained a tremendous success. The two volumes of "Polymers - Opportunities and Risks" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 "Polymers - Opportunities and Risks I: General and Environmental Aspects" is dedicated to the basics of the engineering of polymers - always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 "Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists, but also for environmental managers and decision makers. |
You may like...
Environmental Assessment of Patagonia's…
Americo Iadran Torres, Verena Agustina Campodonico
Hardcover
R3,078
Discovery Miles 30 780
Applied Geochemistry with Case Studies…
Luis Felipe Mazadiego, Eduardo De Miguel Garcia, …
Hardcover
Introduction to Analytical Methods in…
Jan Schwarzbauer, Branimir Jovancicevic
Hardcover
R3,508
Discovery Miles 35 080
CO2 Injection in the Network of…
J. Carlos de Dios, Srikanta Mishra, …
Hardcover
R3,624
Discovery Miles 36 240
Sustainable Environment and…
Krishna R. Reddy, Arvind K. Agnihotri, …
Hardcover
R8,131
Discovery Miles 81 310
Principles of Induction Logging, Volume…
A.A. Kaufman, Yu.A. Dashevsky
Hardcover
R6,624
Discovery Miles 66 240
|